大模型幻觉成应用落地难题 最新评测文心一言解决幻觉能力最好文心一言解决幻觉能力最好 或成产业应用首选

"林黛玉倒拔垂杨柳"、"月球上面有桂树"、"宋江字武松"......相信经常使用大语言模型都会遇到这样"一本正经胡说八道"的情况。这其实是大模型的"幻觉"问题,是大模型行业落地的核心挑战之一。例如幻觉会影响生成内容的可靠性,对于法律、金融、医疗等专业要求高的领域,将难以完成实际场景任务。因此,大模型幻觉问题也被认为是制约大模型广泛应用的一大难题。如何准确评估和解决大语言模型中的幻觉问题已经成为一个至关重要的挑战。近日,复旦大学与上海人工智能实验室构建了针对中文大模型的幻觉评测数据集HalluQA,对业界主流的大模型进行了评估。HalluQA采用无幻觉率来评估大模型的优劣。无幻觉率越高代表模型幻觉越低,事实准确性越高。在评测的24个主流大模型中,包括百度文心一言ERNIE-Bot、百川Baichuan、智谱ChatGLM、阿里通义千问和GPT-4等。

中文大模型幻觉评测数据集

HalluQA对24个主流大模型进行评测从评测结果来看,幻觉问题对大模型来说尚有困难,有18个模型的无幻觉率低于50%。在幻觉消除上,具备检索增强能力的大模型优势明显,在所有模型评测中,文心一言在整体幻觉问题解决方面表现突出,排名第一,整体无幻觉率为69.33%。而GPT-4整体无幻觉率为53.11%,排名第六。

HalluQA:不同类型模型在不同类型的问题上的平均非幻觉率

行业普遍认为,幻觉问题对于大模型在多个领域的落地都可能产生严重影响,包括客户服务、金融服务、法律决策和医疗诊断等。因此解决幻觉问题越好的大模型,才具备更强的产业落地价值。

相关推荐
好好学习啊天天向上22 分钟前
C盘容量不够,python , pip,安装包的位置
linux·python·pip
时见先生25 分钟前
Python库和conda搭建虚拟环境
开发语言·人工智能·python·自然语言处理·conda
二十雨辰26 分钟前
[python]-循环语句
服务器·python
Yvonne爱编码30 分钟前
Java 四大内部类全解析:从设计本质到实战应用
java·开发语言·python
wqwqweee34 分钟前
Flutter for OpenHarmony 看书管理记录App实战:搜索功能实现
开发语言·javascript·python·flutter·harmonyos
-To be number.wan2 小时前
Python数据分析:numpy数值计算基础
开发语言·python·数据分析
Loo国昌3 小时前
深入理解 FastAPI:Python高性能API框架的完整指南
开发语言·人工智能·后端·python·langchain·fastapi
chinesegf3 小时前
Ubuntu 安装 Python 虚拟环境:常见问题与解决指南
linux·python·ubuntu
醉舞经阁半卷书14 小时前
Python机器学习常用库快速精通
人工智能·python·深度学习·机器学习·数据挖掘·数据分析·scikit-learn
开源技术4 小时前
Violit: Streamlit杀手,无需全局刷新,构建AI面板
人工智能·python