基于Pyflwdir实现流域的提取(参照官网例子)

本文参照官网例子实现流域的提取,官方GitHub地址如下pyflwdir

该工具包目前仅支持D8和LDD两种算法,在效率上具有较好的应用性,我用省级的DEM(30米)数据作为测试,输出效率可以满足一般作业需要。

环境environment.yml如下:

python 复制代码
name: pyflwdir

channels:
  - conda-forge

# note that these are the developer dependencies,
# if you only want the user dependencies, see
# install_requires in setup.py
dependencies:
  # required
  - python>=3.9
  - pyflwdir
  # optional for notebooks
  - cartopy>=0.20 
  - descartes
  - geopandas>=0.8
  - jupyter
  - matplotlib
  - rasterio

用到的utils.py的代码如下:

python 复制代码
import matplotlib
import matplotlib.pyplot as plt
from matplotlib import cm, colors
import cartopy.crs as ccrs
import descartes
import numpy as np
import os
import rasterio
from rasterio import features
import geopandas as gpd

np.random.seed(seed=101)
matplotlib.rcParams["savefig.bbox"] = "tight"
matplotlib.rcParams["savefig.dpi"] = 256
plt.style.use("seaborn-v0_8-whitegrid")

# read example elevation data and derive background hillslope
fn = os.path.join(os.path.dirname(__file__), r"D:\CLIPGY.tif")
with rasterio.open(fn, "r") as src:
    elevtn = src.read(1)
    extent = np.array(src.bounds)[[0, 2, 1, 3]]
    crs = src.crs
ls = matplotlib.colors.LightSource(azdeg=115, altdeg=45)
hs = ls.hillshade(np.ma.masked_equal(elevtn, -9999), vert_exag=1e3)


# convenience method for plotting
def quickplot(
    gdfs=[], raster=None, hillshade=True, extent=extent, hs=hs, title="", filename=""
):
    fig = plt.figure(figsize=(8, 15))
    ax = fig.add_subplot(projection=ccrs.PlateCarree())
    # plot hillshade background
    if hillshade:
        ax.imshow(
            hs,
            origin="upper",
            extent=extent,
            cmap="Greys",
            alpha=0.3,
            zorder=0,
        )
    # plot geopandas GeoDataFrame
    for gdf, kwargs in gdfs:
        gdf.plot(ax=ax, **kwargs)
    if raster is not None:
        data, nodata, kwargs = raster
        ax.imshow(
            np.ma.masked_equal(data, nodata),
            origin="upper",
            extent=extent,
            **kwargs,
        )
    ax.set_aspect("equal")
    ax.set_title(title, fontsize="large")
    ax.text(
        0.01, 0.01, "created with pyflwdir", transform=ax.transAxes, fontsize="large"
    )
    if filename:
        plt.savefig(f"{filename}.png")
    return ax


# convenience method for vectorizing a raster
def vectorize(data, nodata, transform, crs=crs, name="value"):
    feats_gen = features.shapes(
        data,
        mask=data != nodata,
        transform=transform,
        connectivity=8,
    )
    feats = [
        {"geometry": geom, "properties": {name: val}} for geom, val in list(feats_gen)
    ]

    # parse to geopandas for plotting / writing to file
    gdf = gpd.GeoDataFrame.from_features(feats, crs=crs)
    gdf[name] = gdf[name].astype(data.dtype)
    return gdf

执行代码如下:

python 复制代码
import rasterio
import numpy as np
import pyflwdir

from utils import (
    quickplot,
    colors,
    cm,
    plt,
)  # data specific quick plot convenience method

# read elevation data of the rhine basin using rasterio
with rasterio.open(r"D:\Raster.tif", "r") as src:
    elevtn = src.read(1)
    nodata = src.nodata
    transform = src.transform
    crs = src.crs
    extent = np.array(src.bounds)[[0, 2, 1, 3]]
    latlon = src.crs.is_geographic
    prof = src.profile

ax = quickplot(title="Elevation")
im = ax.imshow(
    np.ma.masked_equal(elevtn, -9999),
    extent=extent,
    cmap="gist_earth_r",
    alpha=0.5,
    vmin=0,
    vmax=1000,
)
fig = plt.gcf()
cax = fig.add_axes([0.8, 0.37, 0.02, 0.12])
fig.colorbar(im, cax=cax, orientation="vertical", extend="max")
cax.set_ylabel("elevation [m+EGM96]")
# plt.savefig('elevation.png', dpi=225, bbox_axis='tight')
python 复制代码
#####划分子流域
import geopandas as gpd
import numpy as np
import rasterio
import pyflwdir

# local convenience methods (see utils.py script in notebooks folder)
from utils import vectorize  # convenience method to vectorize rasters
from utils import quickplot, colors, cm  # data specific quick plot method

# returns FlwDirRaster object
flw = pyflwdir.from_dem(
    data=elevtn,
    nodata=src.nodata,
    transform=transform,
    latlon=latlon,
    outlets="min",
)
import geopandas as gpd

feats = flw.streams(min_sto=4)
gdf = gpd.GeoDataFrame.from_features(feats, crs=crs)

# create nice colormap of Blues with less white
cmap_streams = colors.ListedColormap(cm.Blues(np.linspace(0.4, 1, 7)))
gdf_plot_kwds = dict(column="strord", cmap=cmap_streams)
# plot streams with hillshade from elevation data (see utils.py)
ax = quickplot(
    gdfs=[(gdf, gdf_plot_kwds)],
    title="Streams based steepest gradient algorithm",
    filename="flw_streams_steepest_gradient",
)
python 复制代码
# update data type and nodata value properties which are different compared to the input elevation grid and write to geotif
prof.update(dtype=d8_data.dtype, nodata=247)
with rasterio.open(r"D:\flwdir.tif", "w", **prof) as src:
    src.write(d8_data, 1)

######################     
#Delineation of (sub)basins#
###########
with rasterio.open(r"D:\flwdir.tif", "r") as src:
    flwdir = src.read(1)
    crs = src.crs
    flw = pyflwdir.from_array(
        flwdir,
        ftype="d8",
        transform=src.transform,
        latlon=crs.is_geographic,
        cache=True,
    )
    # define output locations
    #x, y = np.array([106.6348,26.8554]), np.array([107.0135,26.8849])
    #x, y = np.array([26.8554,106.6348]), np.array([26.8849,107.0135])
    x, y = np.array([106.4244,107.0443]), np.array([26.8554,27.0384])
    gdf_out = gpd.GeoSeries(gpd.points_from_xy(x, y, crs=4326))
    # delineate subbasins
    subbasins = flw.basins(xy=(x, y), streams=flw.stream_order() >= 5)
    # vectorize subbasins using the vectorize convenience method from utils.py
    gdf_bas = vectorize(subbasins.astype(np.int32), 0, flw.transform, name="basin")
    gdf_bas.head()

# plot
# key-word arguments passed to GeoDataFrame.plot()
gpd_plot_kwds = dict(
    column="basin",
    cmap=cm.Set3,
    legend=True,
    categorical=True,
    legend_kwds=dict(title="Basin ID [-]"),
    alpha=0.5,
    edgecolor="black",
    linewidth=0.8,
)
points = (gdf_out, dict(color="red", markersize=20))
bas = (gdf_bas, gpd_plot_kwds)
# plot using quickplot convenience method from utils.py
ax = quickplot([bas, points], title="Basins from point outlets", filename="flw_basins")
python 复制代码
# calculate subbasins with a minimum stream order 7 and its outlets
subbas, idxs_out = flw.subbasins_streamorder(min_sto=7, mask=None)
# transfrom map and point locations to GeoDataFrames
gdf_subbas = vectorize(subbas.astype(np.int32), 0, flw.transform, name="basin")
gdf_out = gpd.GeoSeries(gpd.points_from_xy(*flw.xy(idxs_out), crs=4326))
# plot
gpd_plot_kwds = dict(
    column="basin", cmap=cm.Set3, edgecolor="black", alpha=0.6, linewidth=0.5
)
bas = (gdf_subbas, gpd_plot_kwds)
points = (gdf_out, dict(color="k", markersize=20))
title = "Subbasins based on a minimum stream order"
ax = quickplot([bas, points], title=title, filename="flw_subbasins")
python 复制代码
# get the first level nine pfafstetter basins
pfafbas1, idxs_out = flw.subbasins_pfafstetter(depth=1)
# vectorize raster to obtain polygons
gdf_pfaf1 = vectorize(pfafbas1.astype(np.int32), 0, flw.transform, name="pfaf")
gdf_out = gpd.GeoSeries(gpd.points_from_xy(*flw.xy(idxs_out), crs=4326))
gdf_pfaf1.head()

# plot
gpd_plot_kwds = dict(
    column="pfaf",
    cmap=cm.Set3_r,
    legend=True,
    categorical=True,
    legend_kwds=dict(title="Pfafstetter \nlevel 1 index [-]", ncol=3),
    alpha=0.6,
    edgecolor="black",
    linewidth=0.4,
)

points = (gdf_out, dict(color="k", markersize=20))
bas = (gdf_pfaf1, gpd_plot_kwds)
title = "Subbasins based on pfafstetter coding (level=1)"
ax = quickplot([bas, points], title=title, filename="flw_pfafbas1")
python 复制代码
# lets create a second pfafstetter layer with a minimum subbasin area of 5000 km2
pfafbas2, idxs_out = flw.subbasins_pfafstetter(depth=2, upa_min=5000)
gdf_pfaf2 = vectorize(pfafbas2.astype(np.int32), 0, flw.transform, name="pfaf2")
gdf_out = gpd.GeoSeries(gpd.points_from_xy(*flw.xy(idxs_out), crs=4326))
gdf_pfaf2["pfaf"] = gdf_pfaf2["pfaf2"] // 10
gdf_pfaf2.head()


# plot
bas = (gdf_pfaf2, gpd_plot_kwds)
points = (gdf_out, dict(color="k", markersize=20))
title = "Subbasins based on pfafstetter coding (level=2)"
ax = quickplot([bas, points], title=title, filename="flw_pfafbas2")
python 复制代码
# calculate subbasins with a minimum stream order 7 and its outlets
min_area = 2000
subbas, idxs_out = flw.subbasins_area(min_area)
# transfrom map and point locations to GeoDataFrames
gdf_subbas = vectorize(subbas.astype(np.int32), 0, flw.transform, name="basin")
# randomize index for visualization
basids = gdf_subbas["basin"].values
gdf_subbas["color"] = np.random.choice(basids, size=basids.size, replace=False)
# plot
gpd_plot_kwds = dict(
    column="color", cmap=cm.Set3, edgecolor="black", alpha=0.6, linewidth=0.5
)
bas = (gdf_subbas, gpd_plot_kwds)
title = f"Subbasins based on a minimum area of {min_area} km2"
ax = quickplot([bas], title=title, filename="flw_subbasins_area")
相关推荐
是梦终空1 小时前
计算机毕业设计240—基于python+爬虫+html的微博舆情数据可视化系统(源代码+数据库)
爬虫·python·pandas·课程设计·毕业论文·计算机毕业设计·微博舆情可视化
CodeJourney.1 小时前
Python开发可视化音乐播放器教程(附代码)
数据库·人工智能·python
爱学习的小鱼gogo2 小时前
pyhton 螺旋矩阵(指针-矩阵-中等)含源码(二十六)
python·算法·矩阵·指针·经验·二维数组·逆序
言之。2 小时前
Andrej Karpathy 演讲【PyTorch at Tesla】
人工智能·pytorch·python
赵谨言2 小时前
基于Python楼王争霸劳动竞赛数据处理分析
大数据·开发语言·经验分享·python
智启七月3 小时前
谷歌 Gemini 3.0 正式发布:一键生成 Web OS,编程能力碾压竞品
人工智能·python
2401_841495643 小时前
【强化学习】动态规划算法
人工智能·python·算法·动态规划·强化学习·策略迭代·价值迭代
测试19983 小时前
自动化测试报告生成(Allure)
自动化测试·软件测试·python·selenium·测试工具·职场和发展·测试用例
DKunYu4 小时前
PyTorch入门
人工智能·pytorch·python·深度学习
ZhengEnCi4 小时前
Python_哈希表完全指南-从字典到高效查找的 Python 编程利器
python