数据增强让模型更鲁棒

大家好啊,我是董董灿。

在做一些图像分类训练任务时,我们经常会遇到一个很尴尬的情况,那就是:

明明训练数据集中有很多可爱猫咪的照片,但是当我们给训练好的模型输入一张戴着头盔的猫咪进行测试时,模型就不认识了,或者说识别精度很低。

很明显,模型的泛化能力太差,难道戴着头盔的猫咪就不是猫咪了吗?

今天就来说一个可以解决这类尴尬问题的方法,不需要从模型算法上下功夫,而是从训练数据集上下功夫。

那就是数据增强。

1、什么是数据增强

数据增强是一种通过对原始数据集进行变换,生成新的训练样本的技术。

这些变换包括图像翻转、旋转、缩放、裁剪以及其他各种手法。

通过引入这些变化,可以有效地扩充数据集的规模,提高模型的泛化能力。

是不是很简单?

将原始数据集做一些变换然后送给模型做训练,此时裁剪出来的图片,可能就是猫咪尖尖的耳朵和大大的眼睛,训练过程中模型依然会判断这是猫。

此时,如果在送给模型一只戴着头盔的猫,即使模型不认识头盔,它也认识猫耳朵,从而识别出来这是一只猫。

2、数据增强的好处

在训练模型的过程中,数据增强有几个关键的好处:

  1. 泛化能力提升

数据增强有助于让模型更好地适应不同的输入,而不仅仅是训练集中的样本,这使得模型在面对新的、未曾见过的数据时更为稳健。

  1. 防止过拟合:过拟合是模型过度适应训练数据,但在面对新数据时表现不佳的现象。

数据增强通过引入更多变化,有助于降低模型对训练数据的过于依赖,从而减轻过拟合风险。

  1. 模型鲁棒性增强

引入各种变化有助于模型学习到更丰富、更复杂的特征,使其更能够处理现实中的复杂情况。

3、都有哪些方法做数据增强

数据增强的方法其实有很多,不同的方法适用于不同的数据和任务中:

  1. 翻转:包括水平和垂直翻转,模拟不同视角下的图像。

  2. 旋转:对图像进行旋转,增加不同角度的视角。

  3. 缩放和裁剪:调整图像的尺寸,模拟远近不同的拍摄距离。

  4. 平移:在图像上进行平移操作,改变物体在图像中的位置。

  5. 变换:仿射变换,包括平移、旋转、缩放和剪切等操作。

  6. 颜色空间变换:转换图像的颜色空间,增加图像的多样性。

  7. 添加噪声:向图像中添加随机噪声,提高模型对噪声的鲁棒性。

  8. 样本混合:将两个或多个样本的特征进行混合,生成新的样本。

总的来说,数据增强是提高模型性能的重要工具,这种方法不需要绞尽脑汁的去做算法优化和迭代,就可以产生很好的训练效果。

这让我想起了GPT这种大模型,他们之所以效果这么好,一方面是算法很牛,模型参数很多,另一方面是它的训练数据集是整个互联网上的数据。

大力出奇迹,只要数据足够多,模型就可以显的足够智能。

不知道有没有小伙伴在做模型训练时用过上述方法呢?

参考:^ 数据增强让模型更鲁棒

相关推荐
lang201509281 分钟前
Spring Boot 官方文档精解:构建与依赖管理
java·spring boot·后端
why技术1 小时前
从18w到1600w播放量,我的一点思考。
java·前端·后端
间彧1 小时前
Redis Cluster vs Sentinel模式区别
后端
间彧1 小时前
🛡️ 构建高可用缓存架构:Redis集群与Caffeine多级缓存实战
后端
间彧1 小时前
构建本地缓存(如Caffeine)+ 分布式缓存(如Redis集群)的二级缓存架构
后端
程序猿DD3 小时前
Java 25 中的 6 个新特性解读
java·后端
稻草猫.3 小时前
文件 IO
java·笔记·后端·java-ee·idea
掘金码甲哥3 小时前
有关CORS跨域访问,这事没完
后端
码事漫谈4 小时前
从外行到AI指挥官:你必须掌握的五大「程序员思维」
后端
Moonbit4 小时前
MoonBit 开发者激励计划开启|赢取价值 $20 Copilot 月卡权益!
后端