数据增强让模型更鲁棒

大家好啊,我是董董灿。

在做一些图像分类训练任务时,我们经常会遇到一个很尴尬的情况,那就是:

明明训练数据集中有很多可爱猫咪的照片,但是当我们给训练好的模型输入一张戴着头盔的猫咪进行测试时,模型就不认识了,或者说识别精度很低。

很明显,模型的泛化能力太差,难道戴着头盔的猫咪就不是猫咪了吗?

今天就来说一个可以解决这类尴尬问题的方法,不需要从模型算法上下功夫,而是从训练数据集上下功夫。

那就是数据增强。

1、什么是数据增强

数据增强是一种通过对原始数据集进行变换,生成新的训练样本的技术。

这些变换包括图像翻转、旋转、缩放、裁剪以及其他各种手法。

通过引入这些变化,可以有效地扩充数据集的规模,提高模型的泛化能力。

是不是很简单?

将原始数据集做一些变换然后送给模型做训练,此时裁剪出来的图片,可能就是猫咪尖尖的耳朵和大大的眼睛,训练过程中模型依然会判断这是猫。

此时,如果在送给模型一只戴着头盔的猫,即使模型不认识头盔,它也认识猫耳朵,从而识别出来这是一只猫。

2、数据增强的好处

在训练模型的过程中,数据增强有几个关键的好处:

  1. 泛化能力提升

数据增强有助于让模型更好地适应不同的输入,而不仅仅是训练集中的样本,这使得模型在面对新的、未曾见过的数据时更为稳健。

  1. 防止过拟合:过拟合是模型过度适应训练数据,但在面对新数据时表现不佳的现象。

数据增强通过引入更多变化,有助于降低模型对训练数据的过于依赖,从而减轻过拟合风险。

  1. 模型鲁棒性增强

引入各种变化有助于模型学习到更丰富、更复杂的特征,使其更能够处理现实中的复杂情况。

3、都有哪些方法做数据增强

数据增强的方法其实有很多,不同的方法适用于不同的数据和任务中:

  1. 翻转:包括水平和垂直翻转,模拟不同视角下的图像。

  2. 旋转:对图像进行旋转,增加不同角度的视角。

  3. 缩放和裁剪:调整图像的尺寸,模拟远近不同的拍摄距离。

  4. 平移:在图像上进行平移操作,改变物体在图像中的位置。

  5. 变换:仿射变换,包括平移、旋转、缩放和剪切等操作。

  6. 颜色空间变换:转换图像的颜色空间,增加图像的多样性。

  7. 添加噪声:向图像中添加随机噪声,提高模型对噪声的鲁棒性。

  8. 样本混合:将两个或多个样本的特征进行混合,生成新的样本。

总的来说,数据增强是提高模型性能的重要工具,这种方法不需要绞尽脑汁的去做算法优化和迭代,就可以产生很好的训练效果。

这让我想起了GPT这种大模型,他们之所以效果这么好,一方面是算法很牛,模型参数很多,另一方面是它的训练数据集是整个互联网上的数据。

大力出奇迹,只要数据足够多,模型就可以显的足够智能。

不知道有没有小伙伴在做模型训练时用过上述方法呢?

参考:^ 数据增强让模型更鲁棒

相关推荐
争不过朝夕,又念着往昔23 分钟前
Go语言反射机制详解
开发语言·后端·golang
绝无仅有2 小时前
企微审批对接错误与解决方案
后端·算法·架构
Super Rookie2 小时前
Spring Boot 企业项目技术选型
java·spring boot·后端
来自宇宙的曹先生2 小时前
用 Spring Boot + Redis 实现哔哩哔哩弹幕系统(上篇博客改进版)
spring boot·redis·后端
expect7g2 小时前
Flink-Checkpoint-1.源码流程
后端·flink
00后程序员3 小时前
Fiddler中文版如何提升API调试效率:本地化优势与开发者实战体验汇总
后端
用户8122199367223 小时前
C# .Net Core零基础从入门到精通实战教程全集【190课】
后端
bobz9653 小时前
FROM scratch: docker 构建方式分析
后端
lzzy_lx_20893 小时前
Spring Boot登录认证实现学习心得:从皮肤信息系统项目中学到的经验
java·spring boot·后端
前端付豪4 小时前
21、用 Python + Pillow 实现「朋友圈海报图生成器」📸(图文合成 + 多模板 + 自动换行)
后端·python