论文阅读——DiffusionDet

在目标检测上使用扩散模型

前向过程:真实框-->随机框

后向过程:随机框-->真实框

前向过程:

一般一张图片真实框的数目不同,填补到同一的N个框,填补方法可以是重复真实框,填补和图片大小一样的框,或者随机框,填补随机框效果最好。然后,给每个框逐步添加高斯噪声,生成随机框。

特征提取和检测decoder解耦。

decoder用的Sparse R-CNN

sample的时候和PPDM不同,多增加一步DDIM处理过程。

在8 GPUs训练的,450K iterations。

相关推荐
谷粒.4 小时前
Cypress vs Playwright vs Selenium:现代Web自动化测试框架深度评测
java·前端·网络·人工智能·python·selenium·测试工具
CareyWYR8 小时前
每周AI论文速递(251201-251205)
人工智能
北京耐用通信10 小时前
电磁阀通讯频频“掉链”?耐达讯自动化Ethernet/IP转DeviceNet救场全行业!
人工智能·物联网·网络协议·安全·自动化·信息与通信
cooldream200910 小时前
小智 AI 智能音箱深度体验全解析:人设、音色、记忆与多场景玩法的全面指南
人工智能·嵌入式硬件·智能音箱
oil欧哟10 小时前
AI 虚拟试穿实战,如何低成本生成模特上身图
人工智能·ai作画
央链知播11 小时前
中国移联元宇宙与人工智能产业委联席秘书长叶毓睿受邀到北京联合大学做大模型智能体现状与趋势专题报告
人工智能·科技·业界资讯
人工智能培训11 小时前
卷积神经网络(CNN)详细介绍及其原理详解(2)
人工智能·神经网络·cnn
YIN_尹11 小时前
目标检测模型量化加速在 openEuler 上的实现
人工智能·目标检测·计算机视觉
mys551812 小时前
杨建允:企业应对AI搜索趋势的实操策略
人工智能·geo·ai搜索优化·ai引擎优化
小毅&Nora12 小时前
【人工智能】【深度学习】 ⑦ 从零开始AI学习路径:从Python到大模型的实战指南
人工智能·深度学习·学习