pyspark读取数据库性能优化

当数据量很大时,读取方式

dbtable写sql语句

dbtable和query配置不能同时存在,选一种即可。里面都可以直接写sql语句

python 复制代码
jdbcDF = spark.read.format("jdbc")\
    .option("driver",driver)\
    .option("url",url)\
    .option("dbtable","(select * from my_table where class='01' and sex='M' )")\
    .option("user",user)\
    .option("password",password)\
		.load().select("org_code","operate_id")

如果dbtable是一个表,如果load()后进行where和select,都会把整张表加载进来,耗内存。直接写sql语句比较好。

并行方式读取数据库

一般来说,默认读数据库,numPartition是1。

以下代码使得读取数据库并行读是10。

python 复制代码
jdbcDF = spark.read.format("jdbc")\
    .option("driver",driver)\
    .option("url",url)\
    .option("dbtable","(select * from my_table where class='01' and sex='F' )")\
    .option("user",user)\
    .option("password",password)\
		.option("numPartitions",10)\
		.option("partitionColumn","id")\
		.option("lowerBound",0)\
		.option("upperBound",100000)
		.load().select("org_code","operate_id")

numPartitions是设置的最大分区数。(单独设置这一选项,没有设置partitionColumn,lowerBound,upperBound,我怎么试实际运行numPartitions值都是1。大概是spark不知道怎么分割分区)

partitionColumn,lowerBound,upperBound这三个选项必须同时设置。(upperBound-lowerBound)/numPartitions是步长。即使数据内容低于lowerBound,或高于upperBound,依然会把所有数据都加载进来。

比如设置partitionColumn为id列,lowerBound为100,upperBound为400,numPartitions为3,实际内容有小于100的,也有大于300的。

那么第一个分区是低于200的,第二个分区是[200,300),第三个分区是大于等于300的

partitionColumn列的值必须是numeric, date, 或 timestamp类型的。

如果是date类型,可以写.option("lowerBound","2023-01-01")

如果是timestamp类型,可以写.option("lowerBound","2023-01-01 00:00:00")

相关推荐
coding-fun25 分钟前
电子发票批量提取导出合并助手
大数据·数据库
leo_23227 分钟前
备份&恢复--SMP(软件制作平台)语言基础知识之三十九
数据库·数据安全·开发工具·smp(软件制作平台)·应用系统
何以不说话30 分钟前
mysql 的主从复制
运维·数据库·学习·mysql
二二牧人31 分钟前
qemu arm64 linux开发环境搭建
linux·运维·数据库
茁壮成长的露露34 分钟前
导出导入工具mongoexport、mongoimport
数据库·mongodb
Coder_Boy_1 小时前
基于SpringAI的在线考试系统-考试系统DDD(领域驱动设计)实现步骤详解
java·数据库·人工智能·spring boot
workflower1 小时前
软件需求规约的质量属性
java·开发语言·数据库·测试用例·需求分析·结对编程
橘子132 小时前
MySQL库的操作(二)
数据库·mysql·oracle
todoitbo2 小时前
多模数据库技术解析:以KingbaseES MongoDB兼容版为例
数据库·mongodb·kingbasees·金仓数据库
正在走向自律2 小时前
ksycopg2实战:Python连接KingbaseES数据库的完整指南
数据库·python·国产数据库·kingbase·kingbasees·数据库平替用金仓·ksycopg2