pyspark读取数据库性能优化

当数据量很大时,读取方式

dbtable写sql语句

dbtable和query配置不能同时存在,选一种即可。里面都可以直接写sql语句

python 复制代码
jdbcDF = spark.read.format("jdbc")\
    .option("driver",driver)\
    .option("url",url)\
    .option("dbtable","(select * from my_table where class='01' and sex='M' )")\
    .option("user",user)\
    .option("password",password)\
		.load().select("org_code","operate_id")

如果dbtable是一个表,如果load()后进行where和select,都会把整张表加载进来,耗内存。直接写sql语句比较好。

并行方式读取数据库

一般来说,默认读数据库,numPartition是1。

以下代码使得读取数据库并行读是10。

python 复制代码
jdbcDF = spark.read.format("jdbc")\
    .option("driver",driver)\
    .option("url",url)\
    .option("dbtable","(select * from my_table where class='01' and sex='F' )")\
    .option("user",user)\
    .option("password",password)\
		.option("numPartitions",10)\
		.option("partitionColumn","id")\
		.option("lowerBound",0)\
		.option("upperBound",100000)
		.load().select("org_code","operate_id")

numPartitions是设置的最大分区数。(单独设置这一选项,没有设置partitionColumn,lowerBound,upperBound,我怎么试实际运行numPartitions值都是1。大概是spark不知道怎么分割分区)

partitionColumn,lowerBound,upperBound这三个选项必须同时设置。(upperBound-lowerBound)/numPartitions是步长。即使数据内容低于lowerBound,或高于upperBound,依然会把所有数据都加载进来。

比如设置partitionColumn为id列,lowerBound为100,upperBound为400,numPartitions为3,实际内容有小于100的,也有大于300的。

那么第一个分区是低于200的,第二个分区是[200,300),第三个分区是大于等于300的

partitionColumn列的值必须是numeric, date, 或 timestamp类型的。

如果是date类型,可以写.option("lowerBound","2023-01-01")

如果是timestamp类型,可以写.option("lowerBound","2023-01-01 00:00:00")

相关推荐
不羁。。7 小时前
【撸靶笔记】第八关:GET - Blind - Boolian Based - Single Quotes
数据库·sql·mybatis
AwhiteV8 小时前
利用图数据库高效解决 Text2sql 任务中表结构复杂时占用过多大模型上下文的问题
数据库·人工智能·自然语言处理·oracle·大模型·text2sql
m0_595199858 小时前
Redis(以Django为例,含具体操作步骤)
数据库·redis·缓存
爱尚你19938 小时前
MySQL 三大日志:redo log、undo log、binlog 详解
数据库·mysql
小猿姐9 小时前
KubeBlocks AI:AI时代的云原生数据库运维探索
数据库·人工智能·云原生·kubeblocks
NocoBase11 小时前
10 个开源工具,快速构建数据应用
数据库·低代码·开源
麻辣清汤11 小时前
结合BI多维度异常分析(日期-> 商家/渠道->日期(商家/渠道))
数据库·python·sql·finebi
Kan先生13 小时前
对象存储解决方案:MinIO 的架构与代码实战
数据库·python
超级迅猛龙13 小时前
保姆级Debezium抽取SQL Server同步kafka
数据库·hadoop·mysql·sqlserver·kafka·linq·cdc
杨过过儿13 小时前
【Task02】:四步构建简单rag(第一章3节)
android·java·数据库