pyspark读取数据库性能优化

当数据量很大时,读取方式

dbtable写sql语句

dbtable和query配置不能同时存在,选一种即可。里面都可以直接写sql语句

python 复制代码
jdbcDF = spark.read.format("jdbc")\
    .option("driver",driver)\
    .option("url",url)\
    .option("dbtable","(select * from my_table where class='01' and sex='M' )")\
    .option("user",user)\
    .option("password",password)\
		.load().select("org_code","operate_id")

如果dbtable是一个表,如果load()后进行where和select,都会把整张表加载进来,耗内存。直接写sql语句比较好。

并行方式读取数据库

一般来说,默认读数据库,numPartition是1。

以下代码使得读取数据库并行读是10。

python 复制代码
jdbcDF = spark.read.format("jdbc")\
    .option("driver",driver)\
    .option("url",url)\
    .option("dbtable","(select * from my_table where class='01' and sex='F' )")\
    .option("user",user)\
    .option("password",password)\
		.option("numPartitions",10)\
		.option("partitionColumn","id")\
		.option("lowerBound",0)\
		.option("upperBound",100000)
		.load().select("org_code","operate_id")

numPartitions是设置的最大分区数。(单独设置这一选项,没有设置partitionColumn,lowerBound,upperBound,我怎么试实际运行numPartitions值都是1。大概是spark不知道怎么分割分区)

partitionColumn,lowerBound,upperBound这三个选项必须同时设置。(upperBound-lowerBound)/numPartitions是步长。即使数据内容低于lowerBound,或高于upperBound,依然会把所有数据都加载进来。

比如设置partitionColumn为id列,lowerBound为100,upperBound为400,numPartitions为3,实际内容有小于100的,也有大于300的。

那么第一个分区是低于200的,第二个分区是[200,300),第三个分区是大于等于300的

partitionColumn列的值必须是numeric, date, 或 timestamp类型的。

如果是date类型,可以写.option("lowerBound","2023-01-01")

如果是timestamp类型,可以写.option("lowerBound","2023-01-01 00:00:00")

相关推荐
RestCloud4 小时前
揭秘 CDC 技术:让数据库同步快人一步
数据库·api
得物技术7 小时前
MySQL单表为何别超2000万行?揭秘B+树与16KB页的生死博弈|得物技术
数据库·后端·mysql
可涵不会debug11 小时前
【IoTDB】时序数据库选型指南:工业大数据场景下的技术突围
数据库·时序数据库
ByteBlossom11 小时前
MySQL 面试场景题之如何处理 BLOB 和CLOB 数据类型?
数据库·mysql·面试
麦兜*11 小时前
MongoDB Atlas 云数据库实战:从零搭建全球多节点集群
java·数据库·spring boot·mongodb·spring·spring cloud
Slaughter信仰11 小时前
深入理解Java虚拟机:JVM高级特性与最佳实践(第3版)第十章知识点问答(10题)
java·jvm·数据库
麦兜*11 小时前
MongoDB 在物联网(IoT)中的应用:海量时序数据处理方案
java·数据库·spring boot·物联网·mongodb·spring
-Xie-12 小时前
Mysql杂志(十六)——缓存池
数据库·mysql·缓存
七夜zippoe12 小时前
缓存与数据库一致性实战手册:从故障修复到架构演进
数据库·缓存·架构