TypeChat、JSONSchemaChat实战 - 让ChatGPT更听你的话

TypeChat 用一句话概括,就是用了它你可以让大语言模型(比如 ChatGPT)将自然语言转换成特定类型的 JSON 数据。

我们在使用 ChatGPT 的时候,大致流程如下:

假如我们需要 ChatGPT 按照我们输入的 prompt,输出指定格式的 JSON 数据,我们在 prompt 里将我们的要求描述清楚就行,比如

好像没什么问题,很听话。

我们再看一个例子

js 复制代码
{
    "filters": [
        {
            "component": "select",
            "key": "店铺名称",
            "label": "店铺名称",
            "placeholder": "请输入"
        },
        {
            "component": "select",
            "key": "店铺编码",
            "label": "店铺编码",
            "placeholder": "请输入"
        },
        {
            "component": "select",
            "key": "店铺门头编码",
            "label": "店铺门头编码",
            "placeholder": "请输入"
        },
        {
            "component": "select",
            "key": "所在区域",
            "label": "所在区域",
            "placeholder": "全部"
        }
    ],
    "columns": [
        {
            "slot": false,
            "title": "店铺编码",
            "dataIndex": "店铺编码",
            "key": "店铺编码"
        },
        {
            "slot": false,
            "title": "店铺名称",
            "dataIndex": "店铺名称",
            "key": "店铺名称"
        },
        {
            "slot": false,
            "title": "店铺业务范围",
            "dataIndex": "店铺业务范围",
            "key": "店铺业务范围"
        },
        {
            "slot": false,
            "title": "店铺类型",
            "dataIndex": "店铺类型",
            "key": "店铺类型"
        },
        {
            "slot": false,
            "title": "所在区域",
            "dataIndex": "所在区域",
            "key": "所在区域"
        },
        {
            "slot": false,
            "title": "详细地址",
            "dataIndex": "详细地址",
            "key": "详细地址"
        }
    ],
    "pagination": {
        "show": true,
        "page": "page",
        "size": "size",
        "total": "result.total"
    },
    "includeModifyModal": false,
    "fetchName": "fetchTableList",
    "result": "[\"result\"][\"records\"]",
    "serviceName": "getTableList"
}

我们需要 ChatGPT 把上面 JSON 数据中 filters 字段中的 key 字段的值翻译为英文,使用驼峰语法。columns 字段中的 key、dataIndex 字段的值翻译为英文,使用驼峰语法。

我们的 prompt 可以这么写:

js 复制代码
{
    "filters": [
        {
            "component": "select",
            "key": "店铺名称",
            "label": "店铺名称",
            "placeholder": "请输入"
        },
        {
            "component": "select",
            "key": "店铺编码",
            "label": "店铺编码",
            "placeholder": "请输入"
        },
        {
            "component": "select",
            "key": "店铺门头编码",
            "label": "店铺门头编码",
            "placeholder": "请输入"
        },
        {
            "component": "select",
            "key": "所在区域",
            "label": "所在区域",
            "placeholder": "全部"
        }
    ],
    "columns": [
        {
            "slot": false,
            "title": "店铺编码",
            "dataIndex": "店铺编码",
            "key": "店铺编码"
        },
        {
            "slot": false,
            "title": "店铺名称",
            "dataIndex": "店铺名称",
            "key": "店铺名称"
        },
        {
            "slot": false,
            "title": "店铺业务范围",
            "dataIndex": "店铺业务范围",
            "key": "店铺业务范围"
        },
        {
            "slot": false,
            "title": "店铺类型",
            "dataIndex": "店铺类型",
            "key": "店铺类型"
        },
        {
            "slot": false,
            "title": "所在区域",
            "dataIndex": "所在区域",
            "key": "所在区域"
        },
        {
            "slot": false,
            "title": "详细地址",
            "dataIndex": "详细地址",
            "key": "详细地址"
        }
    ],
    "pagination": {
        "show": true,
        "page": "page",
        "size": "size",
        "total": "result.total"
    },
    "includeModifyModal": false,
    "fetchName": "fetchTableList",
    "result": "[\"result\"][\"records\"]",
    "serviceName": "getTableList"
}
将这段 json 中,filters 字段中的 key 字段的值翻译为英文,使用驼峰语法,label、placeholder 字段的值保留中文。
columns 字段中的 key、dataIndex 字段的值翻译为英文,使用驼峰语法,title 字段的值保留中文。 
返回翻译后的 markdown 语法的代码块

最后面的那段话已经经过了几次修改,我们看下 ChatGPT 返回的内容:

js 复制代码
{
    "filters": [
        {
            "component": "select",
            "storeName": "店铺名称",
            "label": "店铺名称",
            "placeholder": "请输入"
        },
        {
            "component": "select",
            "storeCode": "店铺编码",
            "label": "店铺编码",
            "placeholder": "请输入"
        },
        {
            "component": "select",
            "storeDoorCode": "店铺门头编码",
            "label": "店铺门头编码",
            "placeholder": "请输入"
        },
        {
            "component": "select",
            "area": "所在区域",
            "label": "所在区域",
            "placeholder": "全部"
        }
    ],
    "columns": [
        {
            "slot": false,
            "title": "店铺编码",
            "storeCode": "店铺编码",
            "key": "storeCode"
        },
        {
            "slot": false,
            "title": "店铺名称",
            "storeName": "店铺名称",
            "key": "storeName"
        },
        {
            "slot": false,
            "title": "店铺业务范围",
            "storeBusinessScope": "店铺业务范围",
            "key": "storeBusinessScope"
        },
        {
            "slot": false,
            "title": "店铺类型",
            "storeType": "店铺类型",
            "key": "storeType"
        },
        {
            "slot": false,
            "title": "所在区域",
            "area": "所在区域",
            "key": "area"
        },
        {
            "slot": false,
            "title": "详细地址",
            "detailedAddress": "详细地址",
            "key": "detailedAddress"
        }
    ],
    "pagination": {
        "show": true,
        "page": "page",
        "size": "size",
        "total": "result.total"
    },
    "includeModifyModal": false,
    "fetchName": "fetchTableList",
    "result": "[\"result\"][\"records\"]",
    "serviceName": "getTableList"
}

filters 里的 key 字段哪去了?columns 里 dataIndex 字段哪去了?

这只是我遇到的各种情况里的一种,当然也有成功的,反正就是很玄学,可能是我半年 prompt 练习生的水平不够吧。

如果我们用 TypeChat 会怎么样呢?

直接看效果 :

完美。

TypeChat 的大致原理如下:

其实就是在 prompt 拼上了一个 TS 类型,要求 ChatGPT 按照 TS 类型声明输出 JSON。背后还会构建一个 TS 程序去进行校验,如果校验失败就把错误信息也加到 prompt 里,让 ChatGPT 再处理一次。

上面生成的 prompt 跟 TypeChat 生成的有些区别,我并没有直接使用 TypeChat,为了方便在我的项目里使用就抄了一份进行修改,在生成 prompt 的里加上了 "按照字段的注释进行处理" 这一要求。修改后的代码: github.com/lowcode-sca...

在 TS 类型的字段注释里还可以加入更离谱的东西来要求 ChatGPT 去处理,比如之前弄的一个根据聊天记录生成日程安排的小 demo,在字段注释里加上当前时间,让 ChatGPT 根据会话内容推算出具体的日期。TS 类型定义如下:

js 复制代码
const res = await translate({
    schema: `export type SchedulType = {
              /**
               * 时间,格式:YYYY-MM-DD HH:mm:ss,当前时间为 ${new Date().toLocaleString()},请推算出正确的时间
               */
              time: string;
              /**
               * 活动主题
               */
              todo: string;
              /**
               * 地点
               */
              addr: string;
              /**
               * 活动的全体参与人
               */
              participant: string[];
            };`,
    typeName: 'SchedulType',
    request: `根据下面的聊天记录,生成日程安排:${message.data}`,
    createChatCompletion: createChatCompletionForScript,
    showWebview: true,
  });

聊天记录中只说到了周六下午两点,ChatGPT 根据字段注释里的当前时间正确推算出了日程的具体日期。

受到 TypeChat 的启发,借助 JSON Schema 实现了一个 JSONSchemaChat,原理差不多,效果如下:

相关推荐
恋猫de小郭1 小时前
Flutter Zero 是什么?它的出现有什么意义?为什么你需要了解下?
android·前端·flutter
崔庆才丨静觅8 小时前
hCaptcha 验证码图像识别 API 对接教程
前端
passerby60618 小时前
完成前端时间处理的另一块版图
前端·github·web components
掘了8 小时前
「2025 年终总结」在所有失去的人中,我最怀念我自己
前端·后端·年终总结
崔庆才丨静觅8 小时前
实用免费的 Short URL 短链接 API 对接说明
前端
崔庆才丨静觅9 小时前
5分钟快速搭建 AI 平台并用它赚钱!
前端
崔庆才丨静觅9 小时前
比官方便宜一半以上!Midjourney API 申请及使用
前端
Moment9 小时前
富文本编辑器在 AI 时代为什么这么受欢迎
前端·javascript·后端
崔庆才丨静觅10 小时前
刷屏全网的“nano-banana”API接入指南!0.1元/张量产高清创意图,开发者必藏
前端
剪刀石头布啊10 小时前
jwt介绍
前端