Metadata:分析阿里巴巴的微服务依赖图和性能

论文对阿里巴巴集群中部署的大规模微服务进行了全面的研究。他们分析了 7 天内 20,000 多个微服务的行为,并根据收集的 100 亿条调用跟踪来分析它们的特征。该论文获得SOCC 2021最佳论文奖

他们发现:

  • 微服务图在运行时是动态的

  • 大多数图形像树一样分散生长

  • 调用图的大小遵循重尾分布

根据他们的发现,他们提供了一些有关提高微服务运行时性能的实用技巧。他们还开发了一个随机模型来模拟微服务调用图依赖关系,并表明它近似于他们收集的数据集(可在https://github.com/alibaba/clusterdata获取)。

一个微服务运行在多个容器上。对前端微服务的调用会触发对其他微服务的调用,依此类推。在生成的调用图中,每条边将上游微服务 (UM) 连接到它调用的下游微服务 (DM)。呼叫的响应时间 (RT) 是 UM 呼叫其 DM 到收到响应之间的时间。

阿里巴巴集群使用Kubernetes来管理裸机。在线服务(例如微服务)和离线批处理作业共存于同一个裸机节点中,以提高资源利用率。有状态服务(即数据库和Memcached)部署在专用集群中。

微服务调用图的大小遵循重尾分布。大约 10% 的调用图由 40 多个微服务阶段组成。最大的调用图甚至可以包含数百到数千个微服务。对于包含超过 40 个微服务的调用图,其微服务中大约 50% 是 Memcached(MC)。

发现:

  • 调用图变得更深,查询的缓存未命中率迅速增加。当数据在缓存中未命中时,查询将发送到数据库服务。
  • 超过10%的微服务对的乘积>=5,这意味着阿里巴巴集群中很多微服务对具有很强的耦合依赖关系。
  • 微服务调用率与 CPU 利用率和 Java 年轻代垃圾回收 (Young GC) 高度相关,但与内存利用率无关。这意味着与内存利用率相比,CPU 利用率和 Young GC 是微服务容器资源压力更好的指标。阿里巴巴微服务轨迹中大多数容器的内存利用率在运行时几乎稳定(方差小于 10%)。
  • 由于主机 CPU 利用率较高,响应时间 (RT) 可能会大大缩短。当主机CPU利用率超过40%(或80%)时,微服务的RT平均下降20%(或30%)以上。
  • 这些结果表明,大多数在线微服务对 CPU 干扰很敏感,强烈需要更高效的资源调度器,能够很好地平衡不同主机之间的 CPU 利用率。
  • 跟踪显示,每分钟跨主机的 CPU 利用率差异可能高达 20%,这意味着有机会更好地平衡跨主机的批处理工作负载。

https://www.jdon.com/70550.html

相关推荐
Maxkim1 小时前
「✍️JS原子笔记 」深入理解JS数据类型检测的4种核心方式
前端·javascript·面试
小高0071 小时前
Elips-Core:轻量级 Node.js Web 框架核心实现
前端·javascript·node.js
Aotman_1 小时前
Vue MutationObserver 监听
前端·javascript·vue.js·elementui·前端框架·ecmascript
专注前端30年2 小时前
Vue3的生命周期钩子有哪些变化?
前端·javascript·vue.js
VcB之殇3 小时前
popstate监听浏览器的前进后退事件
前端·javascript·vue.js
宁雨桥3 小时前
Vue组件初始化时序与异步资源加载的竞态问题实战解析
前端·javascript·vue.js
成为大佬先秃头3 小时前
渐进式JavaScript框架:Vue 过渡 & 动画 & 可复用性 & 组合
开发语言·javascript·vue.js
GISer_Jing4 小时前
Taro跨端开发实战:JX首页实现_Trae SOLO构建
前端·javascript·aigc·taro
星月心城4 小时前
面试八股文-JavaScript(第四天)
开发语言·javascript·ecmascript
喝拿铁写前端4 小时前
AI 驱动前端开发覆盖的能力全景拆解
前端·javascript·人工智能