python多线程介绍

每个库或模块都有其特定的用途和优势,选择哪一个取决于具体的任务需求、计算资源、以及开发者的熟悉程度。分类比如有,对于 CPU 密集型的大数据处理任务,对于需要大量快速 I/O 操作的网络爬虫

  1. ThreadPoolExecutor (concurrent.futures 模块):

    • 用途: 主要用于 I/O 密集型任务,如文件读写、网络请求等。
    • 工作原理: 使用线程池执行并发任务。由于 GIL(全局解释器锁)的存在,它不适合 CPU 密集型任务。
    • 优点: 线程切换开销小于进程切换,适用于多个较小的、阻塞式任务。
  2. ProcessPoolExecutor (concurrent.futures 模块):

    • 用途: 适用于 CPU 密集型任务,如复杂计算、数据处理等。
    • 工作原理: 使用进程池执行并发任务,每个进程运行在其独立的内存空间内。
    • 优点: 避开 GIL 限制,可以充分利用多核 CPU。
  3. multiprocessing 模块:

    • 用途 : 与 ProcessPoolExecutor 类似,用于 CPU 密集型任务。
    • 工作原理: 创建多个进程,每个进程都在自己的 Python 解释器内运行。
    • 特点: 提供了更丰富的进程间通信(IPC)工具,如管道、队列等。
  4. threading 模块:

    • 用途: 用于多线程编程,适合 I/O 密集型任务。
    • 特点 : 相比于 ThreadPoolExecutor 提供了更底层的线程操作。
  5. asyncio 模块:

    • 用途: 用于编写单线程并发的异步 I/O 操作,适合高 I/O 等待的应用,如大量网络请求、高并发 Web 应用。
    • 特点: 通过事件循环和协程提供非阻塞操作。
  6. gunicorn + gevent:

    • 用途: 主要用于网络应用,特别是在 Python Web 框架中。
    • 工作原理 : gevent 提供异步操作,而 gunicorn 作为一个 WSGI HTTP 服务器。
  7. Celery:

    • 用途: 用于异步任务队列/作业队列,特别适合需要执行长时间运行任务的应用。
    • 特点: 支持多种消息代理(如 RabbitMQ、Redis)作为任务队列。
  8. Dask:

    • 用途: 用于大规模数据处理,尤其是超出内存大小的数据集。
    • 特点: 提供并行数据处理,与 Pandas、NumPy、Scikit-Learn 等库良好集成。
相关推荐
令狐掌门1 分钟前
python *和**做参数的用法
python·python可变参数
百锦再13 分钟前
第5章 所有权系统
运维·git·python·eclipse·go·github·负载均衡
麦麦大数据1 小时前
MacOS 安装Python 3.13【同时保留旧版本】
开发语言·python·macos·python安装
梦想画家6 小时前
基于PyTorch的时间序列异常检测管道构建指南
人工智能·pytorch·python
PythonFun7 小时前
OCR图片识别翻译工具功能及源码
python·ocr·机器翻译
虫师c7 小时前
Python浪漫弹窗程序:Tkinter实现动态祝福窗口教程
python·tkinter·动画效果·gui编程·弹窗效果
灯火不休时8 小时前
95%准确率!CNN交通标志识别系统开源
人工智能·python·深度学习·神经网络·cnn·tensorflow
deephub9 小时前
FastMCP 入门:用 Python 快速搭建 MCP 服务器接入 LLM
服务器·人工智能·python·大语言模型·mcp
南宫乘风9 小时前
基于 Flask + APScheduler + MySQL 的自动报表系统设计
python·mysql·flask
番石榴AI9 小时前
基于机器学习优化的主图选择方法(酒店,景点,餐厅等APP上的主图展示推荐)
图像处理·人工智能·python·机器学习