python多线程介绍

每个库或模块都有其特定的用途和优势,选择哪一个取决于具体的任务需求、计算资源、以及开发者的熟悉程度。分类比如有,对于 CPU 密集型的大数据处理任务,对于需要大量快速 I/O 操作的网络爬虫

  1. ThreadPoolExecutor (concurrent.futures 模块):

    • 用途: 主要用于 I/O 密集型任务,如文件读写、网络请求等。
    • 工作原理: 使用线程池执行并发任务。由于 GIL(全局解释器锁)的存在,它不适合 CPU 密集型任务。
    • 优点: 线程切换开销小于进程切换,适用于多个较小的、阻塞式任务。
  2. ProcessPoolExecutor (concurrent.futures 模块):

    • 用途: 适用于 CPU 密集型任务,如复杂计算、数据处理等。
    • 工作原理: 使用进程池执行并发任务,每个进程运行在其独立的内存空间内。
    • 优点: 避开 GIL 限制,可以充分利用多核 CPU。
  3. multiprocessing 模块:

    • 用途 : 与 ProcessPoolExecutor 类似,用于 CPU 密集型任务。
    • 工作原理: 创建多个进程,每个进程都在自己的 Python 解释器内运行。
    • 特点: 提供了更丰富的进程间通信(IPC)工具,如管道、队列等。
  4. threading 模块:

    • 用途: 用于多线程编程,适合 I/O 密集型任务。
    • 特点 : 相比于 ThreadPoolExecutor 提供了更底层的线程操作。
  5. asyncio 模块:

    • 用途: 用于编写单线程并发的异步 I/O 操作,适合高 I/O 等待的应用,如大量网络请求、高并发 Web 应用。
    • 特点: 通过事件循环和协程提供非阻塞操作。
  6. gunicorn + gevent:

    • 用途: 主要用于网络应用,特别是在 Python Web 框架中。
    • 工作原理 : gevent 提供异步操作,而 gunicorn 作为一个 WSGI HTTP 服务器。
  7. Celery:

    • 用途: 用于异步任务队列/作业队列,特别适合需要执行长时间运行任务的应用。
    • 特点: 支持多种消息代理(如 RabbitMQ、Redis)作为任务队列。
  8. Dask:

    • 用途: 用于大规模数据处理,尤其是超出内存大小的数据集。
    • 特点: 提供并行数据处理,与 Pandas、NumPy、Scikit-Learn 等库良好集成。
相关推荐
我送炭你添花2 分钟前
Pelco KBD300A 模拟器:04+1.Python 打包详解:历史、发展与多种方式对比
python·测试工具·运维开发
yaoh.wang7 分钟前
力扣(LeetCode) 27: 移除元素 - 解法思路
python·程序人生·算法·leetcode·面试·职场和发展·双指针
幸存者letp9 分钟前
Python 常用方法分类大全
linux·服务器·python
2401_8414956417 分钟前
【自然语言处理】中文 n-gram 词模型
人工智能·python·算法·自然语言处理·n-gram·中文文本生成模型·kneser-ney平滑
嘻哈baby31 分钟前
为什么越来越多的人放弃Flask转向FastAPI?
python
ss27344 分钟前
Java并发编程:DelayQueue延迟订单系统
java·python·算法
JHC0000001 小时前
118. 杨辉三角
python·算法·面试
@游子1 小时前
Python类属性与魔术方法全解析
开发语言·python
yuhaiqun19891 小时前
Typora 技能进阶:从会写 Markdown 到玩转配置 + 插件高效学习笔记
经验分享·笔记·python·学习·学习方法·ai编程·markdown
我送炭你添花2 小时前
Pelco KBD300A 模拟器:06+2.Pelco KBD300A 模拟器项目重构指南
python·重构·自动化·运维开发