python多线程介绍

每个库或模块都有其特定的用途和优势,选择哪一个取决于具体的任务需求、计算资源、以及开发者的熟悉程度。分类比如有,对于 CPU 密集型的大数据处理任务,对于需要大量快速 I/O 操作的网络爬虫

  1. ThreadPoolExecutor (concurrent.futures 模块):

    • 用途: 主要用于 I/O 密集型任务,如文件读写、网络请求等。
    • 工作原理: 使用线程池执行并发任务。由于 GIL(全局解释器锁)的存在,它不适合 CPU 密集型任务。
    • 优点: 线程切换开销小于进程切换,适用于多个较小的、阻塞式任务。
  2. ProcessPoolExecutor (concurrent.futures 模块):

    • 用途: 适用于 CPU 密集型任务,如复杂计算、数据处理等。
    • 工作原理: 使用进程池执行并发任务,每个进程运行在其独立的内存空间内。
    • 优点: 避开 GIL 限制,可以充分利用多核 CPU。
  3. multiprocessing 模块:

    • 用途 : 与 ProcessPoolExecutor 类似,用于 CPU 密集型任务。
    • 工作原理: 创建多个进程,每个进程都在自己的 Python 解释器内运行。
    • 特点: 提供了更丰富的进程间通信(IPC)工具,如管道、队列等。
  4. threading 模块:

    • 用途: 用于多线程编程,适合 I/O 密集型任务。
    • 特点 : 相比于 ThreadPoolExecutor 提供了更底层的线程操作。
  5. asyncio 模块:

    • 用途: 用于编写单线程并发的异步 I/O 操作,适合高 I/O 等待的应用,如大量网络请求、高并发 Web 应用。
    • 特点: 通过事件循环和协程提供非阻塞操作。
  6. gunicorn + gevent:

    • 用途: 主要用于网络应用,特别是在 Python Web 框架中。
    • 工作原理 : gevent 提供异步操作,而 gunicorn 作为一个 WSGI HTTP 服务器。
  7. Celery:

    • 用途: 用于异步任务队列/作业队列,特别适合需要执行长时间运行任务的应用。
    • 特点: 支持多种消息代理(如 RabbitMQ、Redis)作为任务队列。
  8. Dask:

    • 用途: 用于大规模数据处理,尤其是超出内存大小的数据集。
    • 特点: 提供并行数据处理,与 Pandas、NumPy、Scikit-Learn 等库良好集成。
相关推荐
天天睡大觉12 分钟前
Python学习11
网络·python·学习
智航GIS13 分钟前
11.11 Pandas性能革命:向量化操作与内存优化实战指南
python·pandas
写代码的【黑咖啡】1 小时前
Python中的Selenium:强大的浏览器自动化工具
python·selenium·自动化
抠头专注python环境配置1 小时前
解决Windows安装PythonOCC报错:从“No module named ‘OCC’ ”到一键成功
人工智能·windows·python·3d·cad·pythonocc
华研前沿标杆游学1 小时前
2026年华研就业实践营|走进字节跳动,解锁科技行业职业新航向
python
啊阿狸不会拉杆2 小时前
《数字图像处理》第 4 章 - 频域滤波
开发语言·python·数字信号处理·数字图像处理·频率域滤波
HarmonLTS2 小时前
Pygame动画制作进阶(可直接运行,附核心原理)
python·pygame
他们叫我技术总监2 小时前
Python 列表、集合、字典核心区别
android·java·python
木卫四科技2 小时前
Chonkie 技术深度学习
人工智能·python·rag
Omigeq2 小时前
1.2.1 - 图搜索算法(以A*为例) - Python运动规划库教程(Python Motion Planning)
开发语言·python·机器人·图搜索算法