python多线程介绍

每个库或模块都有其特定的用途和优势,选择哪一个取决于具体的任务需求、计算资源、以及开发者的熟悉程度。分类比如有,对于 CPU 密集型的大数据处理任务,对于需要大量快速 I/O 操作的网络爬虫

  1. ThreadPoolExecutor (concurrent.futures 模块):

    • 用途: 主要用于 I/O 密集型任务,如文件读写、网络请求等。
    • 工作原理: 使用线程池执行并发任务。由于 GIL(全局解释器锁)的存在,它不适合 CPU 密集型任务。
    • 优点: 线程切换开销小于进程切换,适用于多个较小的、阻塞式任务。
  2. ProcessPoolExecutor (concurrent.futures 模块):

    • 用途: 适用于 CPU 密集型任务,如复杂计算、数据处理等。
    • 工作原理: 使用进程池执行并发任务,每个进程运行在其独立的内存空间内。
    • 优点: 避开 GIL 限制,可以充分利用多核 CPU。
  3. multiprocessing 模块:

    • 用途 : 与 ProcessPoolExecutor 类似,用于 CPU 密集型任务。
    • 工作原理: 创建多个进程,每个进程都在自己的 Python 解释器内运行。
    • 特点: 提供了更丰富的进程间通信(IPC)工具,如管道、队列等。
  4. threading 模块:

    • 用途: 用于多线程编程,适合 I/O 密集型任务。
    • 特点 : 相比于 ThreadPoolExecutor 提供了更底层的线程操作。
  5. asyncio 模块:

    • 用途: 用于编写单线程并发的异步 I/O 操作,适合高 I/O 等待的应用,如大量网络请求、高并发 Web 应用。
    • 特点: 通过事件循环和协程提供非阻塞操作。
  6. gunicorn + gevent:

    • 用途: 主要用于网络应用,特别是在 Python Web 框架中。
    • 工作原理 : gevent 提供异步操作,而 gunicorn 作为一个 WSGI HTTP 服务器。
  7. Celery:

    • 用途: 用于异步任务队列/作业队列,特别适合需要执行长时间运行任务的应用。
    • 特点: 支持多种消息代理(如 RabbitMQ、Redis)作为任务队列。
  8. Dask:

    • 用途: 用于大规模数据处理,尤其是超出内存大小的数据集。
    • 特点: 提供并行数据处理,与 Pandas、NumPy、Scikit-Learn 等库良好集成。
相关推荐
love530love2 分钟前
【ComfyUI】解决 ModuleNotFoundError: No module named ‘inference_core_nodes‘ 问题
人工智能·windows·python·comfyui·inference-core
亚亚的学习和分享2 小时前
python基础语法----条件语句
python
Zzz 小生3 小时前
LangChain Streaming-Overview:流式处理使用完全指南
人工智能·python·语言模型·langchain·github
yzx9910133 小时前
Python数据结构入门指南:从基础到实践
开发语言·数据结构·python
百锦再3 小时前
Jenkins 全面精通指南:从入门到脚本大师
运维·后端·python·servlet·django·flask·jenkins
FYKJ_20104 小时前
springboot大学校园论坛管理系统--附源码42669
java·javascript·spring boot·python·spark·django·php
Loo国昌4 小时前
【AI应用开发实战】 03_LangGraph运行时与状态图编排:从直接执行到图编排的演进之路
人工智能·后端·python·自然语言处理·prompt
ValhallaCoder4 小时前
hot100-堆
数据结构·python·算法·
小小小米粒4 小时前
函数式接口 + Lambda = 方法逻辑的 “插拔式解耦”
开发语言·python·算法
Dr.Kun5 小时前
【鲲码园PsychoPy】延迟折扣任务(DDT)
python·psychopy·心理学编程