R语言绘制肖像画

简介

最近在网上冲浪🏄时,发现了这样一个博客,该博客使用层次聚类方法绘制简笔画。完整代码见仓库

思想 :加载照片后,使用 imager 包中的 thresold() 函数将值化为黑白图像。之后,随机采样样本并使用聚类算法得到聚类点并进行连接。

教程

安装包

读者需要安装以下包:

r 复制代码
install.packages("imager")
install.packages("tidyverse")
install.packages("purrr")

加载与处理图形

r 复制代码
library(imager)
library(tidyverse)
library(purrr)
# 照片位置设定
file="img/frankenstein.jpg"

加载图形,转换为灰度,并过滤和采样图像。

r 复制代码
load.image(file) %>% 
  grayscale() %>% 
  threshold("45%") %>% 
  as.cimg() %>% 
  as.data.frame() -> franky

相关函数

  1. clustResultx:切割树突,并移除仅由一个点形成的簇
r 复制代码
clustResultx <- function(x) {
  clustCut <- tibble(cluster_id = cutree(clusters, x)) %>% bind_cols(data)
  clustCut %>% group_by(cluster_id) %>% 
    summarize(size = n()) %>% 
    filter(size > 1) %>% 
    select(cluster_id) %>% 
    inner_join(clustCut, by = "cluster_id") -> clustCut
  return(clustCut)
  }
  1. add_segments:添加比较两个连续聚类结果的结果片段
r 复制代码
add_segments <- function(x){
  
  df1 <- clustEvol[[x]]
  df0 <- clustEvol[[x-1]]
  
  new_points <- anti_join(df1, df0, by = "id")
  
  # If a new point is added to an existing cluster
  new_points %>% 
    inner_join(df1, by = "cluster_id", suffix = c(".1", ".2")) %>% 
    filter(id.1 != id.2) %>% 
    mutate(d = sqrt((x.1 - x.2)^2 + (y.1 - y.2)^2)) %>% 
    group_by(id.1) %>% 
    arrange(d) %>% 
    slice(1) %>% 
    select(p1 = id.1, p2 = id.2) %>% 
    ungroup -> new_segments1
  
  # If a new 2-points cluster is generated
  new_points %>% anti_join(bind_rows(select(new_segments1, id = p1), 
                                     select(new_segments1, id = p2)), by = "id") %>% 
    group_by(cluster_id) %>% 
    ungroup -> unpaired_points
  
  unpaired_points %>% inner_join(unpaired_points, by = "cluster_id", suffix = c(".1", ".2")) %>% 
    filter(id.1 < id.2) %>% 
    select(p1 = id.1, p2 = id.2) -> new_segments2
  
  # If two existing clusters are joined
  new_points <- anti_join(df1, df0, by = c("id", "cluster_id"))
  
  new_points %>% 
    inner_join(df1, by = "cluster_id", suffix = c(".1", ".2")) %>% 
    filter(id.1 != id.2) %>% 
    anti_join(new_points, by = c("id.2" = "id")) %>% 
    mutate(d = sqrt((x.1 - x.2)^2 + (y.1 - y.2)^2)) %>% 
    arrange(d) %>% 
    slice(1) %>% 
    select(p1 = id.1, p2 = id.2) %>% 
    ungroup -> new_segments3

  bind_rows(new_segments1, new_segments2, new_segments3)
}

算法应用

r 复制代码
# 样本大小
n <- 2500

# 随机抽取图形中的样本
franky %>% 
  sample_n(n, weight=(1-value)) %>% 
  select(x,y) %>% mutate(id = row_number()) -> data

# 各点之间距离计算
dist_data <- dist(data %>% select(-id), method = "euclidean")

# 分层聚类
clusters <- hclust(dist_data, method = 'single')

# 列出所有可能的集群,从大到小
nrow(data):1 %>% 
  map(function(x) clustResultx(x)) -> clustEvol

# Segments of clusters
2:length(clustEvol) %>% 
  map(function(x) add_segments(x)) %>% 
  bind_rows() -> segments_id

# Segments in (x, y) and (xend, yend) format
segments_id %>% 
  inner_join(data, by = c("p1" = "id"), suffix = c(".1", ".2")) %>% 
  inner_join(data, by = c("p2" = "id"), suffix = c(".1", ".2")) %>% 
  select(x = x.1, y = y.1, xend = x.2, yend = y.2) -> segments

注意:运行本文所有代码,大概需要花费3-4分钟。请耐性等待~

绘图

r 复制代码
ggplot(segments) + 
  geom_curve(aes(x = x, y = y, xend = xend, yend = yend),
             ncp = 10) +
  scale_x_continuous(expand=c(.1, .1)) +
  scale_y_continuous(expand=c(.1, .1), trans = scales::reverse_trans()) +
  coord_equal() +
  theme_void()

通过修改采样样本数量可以得到不同的图形,例如:

其他例子

小编使用上面代码尝试了其他图形,结果如下:

相关推荐
码喽哈哈哈8 分钟前
day01
前端·javascript·html
XT462519 分钟前
解决 npm install 卡住不动或执行失败
前端·npm·node.js
前端小魔女35 分钟前
Rust赋能前端: 纯血前端将 Table 导出 Excel
前端
mubeibeinv40 分钟前
分页/列表分页
java·前端·javascript
林太白1 小时前
js属性-IntersectionObserver
前端·javascript
爱吃羊的老虎1 小时前
【WEB开发.js】getElementById :通过元素id属性获取HTML元素
前端·javascript·html
lucifer3111 小时前
未集成Jenkins、Kubernetes 等自动化部署工具的解决方案
前端
妙哉7361 小时前
零基础学安全--HTML
前端·安全·html
夏天吃哈密瓜1 小时前
用Scala来解决成绩排名的相关问题
开发语言·后端·scala
爱编程的小生1 小时前
SpringBoot Task
java·spring boot·后端