MongoDB聚合:$merge 阶段(2)

$merge的用途是把聚合管道产生的结果写入指定的集合,有时候可以用$merge来做物化视图。下面是$merge的一些例子。

举例

按需物化视图:创建集合

当输出集合不存在时,$merge将自动创建。首先在zoo数据库的salaries集合中填充员工和部门历史数据:

js 复制代码
db.getSiblingDB("zoo").salaries.insertMany([
   { "_id" : 1, employee: "Ant", dept: "A", salary: 100000, fiscal_year: 2017 },
   { "_id" : 2, employee: "Bee", dept: "A", salary: 120000, fiscal_year: 2017 },
   { "_id" : 3, employee: "Cat", dept: "Z", salary: 115000, fiscal_year: 2017 },
   { "_id" : 4, employee: "Ant", dept: "A", salary: 115000, fiscal_year: 2018 },
   { "_id" : 5, employee: "Bee", dept: "Z", salary: 145000, fiscal_year: 2018 },
   { "_id" : 6, employee: "Cat", dept: "Z", salary: 135000, fiscal_year: 2018 },
   { "_id" : 7, employee: "Gecko", dept: "A", salary: 100000, fiscal_year: 2018 },
   { "_id" : 8, employee: "Ant", dept: "A", salary: 125000, fiscal_year: 2019 },
   { "_id" : 9, employee: "Bee", dept: "Z", salary: 160000, fiscal_year: 2019 },
   { "_id" : 10, employee: "Cat", dept: "Z", salary: 150000, fiscal_year: 2019 }
])

然后,使用$group$merge管道阶段,在reporting数据库中创建一个名为budgets的集合。

注意:

  • 对于复制集或标准部署的情况,如果输出数据库不存在会自动创建数据库
  • 对于分片集群部署的情况,要求输出指定的数据库必须已经存在。
js 复制代码
db.getSiblingDB("zoo").salaries.aggregate( [
   { $group: { _id: { fiscal_year: "$fiscal_year", dept: "$dept" }, salaries: { $sum: "$salary" } } },
   { $merge : { into: { db: "reporting", coll: "budgets" }, on: "_id",  whenMatched: "replace", whenNotMatched: "insert" } }
] )
  • $group阶段根据fiscal_yeardept对salaries进行分组
  • $merge阶段将$group阶段处理的结果输出到reporting数据库的budgets集合。

此时,budegets将包含下面的文档:

json 复制代码
{ "_id" : { "fiscal_year" : 2017, "dept" : "A" }, "salaries" : 220000 }
{ "_id" : { "fiscal_year" : 2017, "dept" : "Z" }, "salaries" : 115000 }
{ "_id" : { "fiscal_year" : 2018, "dept" : "A" }, "salaries" : 215000 }
{ "_id" : { "fiscal_year" : 2018, "dept" : "Z" }, "salaries" : 280000 }
{ "_id" : { "fiscal_year" : 2019, "dept" : "A" }, "salaries" : 125000 }
{ "_id" : { "fiscal_year" : 2019, "dept" : "Z" }, "salaries" : 310000 }

按需物化视图:更新/替换数据

下面的例子继续使用上面例子的数据,salaries集合包含了员工薪酬和部门的历史数据:

json 复制代码
{ "_id" : 1, "employee": "Ant", "dept": "A", "salary": 100000, "fiscal_year": 2017 },
{ "_id" : 2, "employee": "Bee", "dept": "A", "salary": 120000, "fiscal_year": 2017 },
{ "_id" : 3, "employee": "Cat", "dept": "Z", "salary": 115000, "fiscal_year": 2017 },
{ "_id" : 4, "employee": "Ant", "dept": "A", "salary": 115000, "fiscal_year": 2018 },
{ "_id" : 5, "employee": "Bee", "dept": "Z", "salary": 145000, "fiscal_year": 2018 },
{ "_id" : 6, "employee": "Cat", "dept": "Z", "salary": 135000, "fiscal_year": 2018 },
{ "_id" : 7, "employee": "Gecko", "dept": "A", "salary": 100000, "fiscal_year": 2018 },
{ "_id" : 8, "employee": "Ant", "dept": "A", "salary": 125000, "fiscal_year": 2019 },
{ "_id" : 9, "employee": "Bee", "dept": "Z", "salary": 160000, "fiscal_year": 2019 },
{ "_id" : 10, "employee": "Cat", "dept": "Z", "salary": 150000, "fiscal_year": 2019 }

budgets集合包含了年度累计预算:

json 复制代码
{ "_id" : { "fiscal_year" : 2017, "dept" : "A" }, "salaries" : 220000 }
{ "_id" : { "fiscal_year" : 2017, "dept" : "Z" }, "salaries" : 115000 }
{ "_id" : { "fiscal_year" : 2018, "dept" : "A" }, "salaries" : 215000 }
{ "_id" : { "fiscal_year" : 2018, "dept" : "Z" }, "salaries" : 280000 }
{ "_id" : { "fiscal_year" : 2019, "dept" : "A" }, "salaries" : 125000 }
{ "_id" : { "fiscal_year" : 2019, "dept" : "Z" }, "salaries" : 310000 }

在当前财政年度(本例中为 2019 年),将新员工增加到slaaries集合,并为下一年预分配一些人数:

js 复制代码
db.getSiblingDB("zoo").salaries.insertMany([
   { "_id" : 11,  employee: "Wren", dept: "Z", salary: 100000, fiscal_year: 2019 },
   { "_id" : 12,  employee: "Zebra", dept: "A", salary: 150000, fiscal_year: 2019 },
   { "_id" : 13,  employee: "headcount1", dept: "Z", salary: 120000, fiscal_year: 2020 },
   { "_id" : 14,  employee: "headcount2", dept: "Z", salary: 120000, fiscal_year: 2020 }
])

下面的聚合将更新budgets集合以反映新的薪酬信息:

js 复制代码
db.getSiblingDB("zoo").salaries.aggregate( [
    { $match: { fiscal_year: 2019 }},
    { $group: { _id: { fiscal_year: "$fiscal_year", dept: "$dept" }, employees: { $push: "$employee" } } },
    { $project: { _id: 0, dept: "$_id.dept", fiscal_year: "$_id.fiscal_year", employees: 1 } },
    { $merge : { into : { db: "reporting", coll: "orgArchive" }, on: [ "dept", "fiscal_year" ], whenMatched: "fail" } }
] )

其中:

  • $match阶段查询出所有fiscal_year大于等于2019的文档。
  • $group阶段根据fiscal_yeardept字段对薪酬进行分组。
  • $merge将结果集写入到budgets集合,替换相同_id(fiscal_yeardept)的文档,本例中没有匹配到文档,所以只会插入新文档。

聚合运行后,查询budgets集合的结果:

js 复制代码
db.getSiblingDB("reporting").budgets.find().sort( { _id: 1 } )

budget集合纳入了2019财年新的薪酬并新增了2020财年的新文档:

json 复制代码
{ "_id" : { "fiscal_year" : 2017, "dept" : "A" }, "salaries" : 220000 }
{ "_id" : { "fiscal_year" : 2017, "dept" : "Z" }, "salaries" : 115000 }
{ "_id" : { "fiscal_year" : 2018, "dept" : "A" }, "salaries" : 215000 }
{ "_id" : { "fiscal_year" : 2018, "dept" : "Z" }, "salaries" : 280000 }
{ "_id" : { "fiscal_year" : 2019, "dept" : "A" }, "salaries" : 275000 }
{ "_id" : { "fiscal_year" : 2019, "dept" : "Z" }, "salaries" : 410000 }
{ "_id" : { "fiscal_year" : 2020, "dept" : "Z" }, "salaries" : 240000 }

只新增数据

为了确认$merge没有覆盖集合的任何数据,设置whenMatchedkeepExistingfail。下面是zoo数据库的salaries集合,包含了员工薪酬和部门历史数据:

json 复制代码
{ "_id" : 1, "employee": "Ant", "dept": "A", "salary": 100000, "fiscal_year": 2017 },
{ "_id" : 2, "employee": "Bee", "dept": "A", "salary": 120000, "fiscal_year": 2017 },
{ "_id" : 3, "employee": "Cat", "dept": "Z", "salary": 115000, "fiscal_year": 2017 },
{ "_id" : 4, "employee": "Ant", "dept": "A", "salary": 115000, "fiscal_year": 2018 },
{ "_id" : 5, "employee": "Bee", "dept": "Z", "salary": 145000, "fiscal_year": 2018 },
{ "_id" : 6, "employee": "Cat", "dept": "Z", "salary": 135000, "fiscal_year": 2018 },
{ "_id" : 7, "employee": "Gecko", "dept": "A", "salary": 100000, "fiscal_year": 2018 },
{ "_id" : 8, "employee": "Ant", "dept": "A", "salary": 125000, "fiscal_year": 2019 },
{ "_id" : 9, "employee": "Bee", "dept": "Z", "salary": 160000, "fiscal_year": 2019 },
{ "_id" : 10, "employee": "Cat", "dept": "Z", "salary": 150000, "fiscal_year": 2019 }

reporting数据库中的orgArchive集合包含了过去财年的部门组织记录。已归档的记录不能修改。

js 复制代码
{ "_id" : ObjectId("5cd8c68261baa09e9f3622be"), "employees" : [ "Ant", "Gecko" ], "dept" : "A", "fiscal_year" : 2018 }
{ "_id" : ObjectId("5cd8c68261baa09e9f3622bf"), "employees" : [ "Ant", "Bee" ], "dept" : "A", "fiscal_year" : 2017 }
{ "_id" : ObjectId("5cd8c68261baa09e9f3622c0"), "employees" : [ "Bee", "Cat" ], "dept" : "Z", "fiscal_year" : 2018 }
{ "_id" : ObjectId("5cd8c68261baa09e9f3622c1"), "employees" : [ "Cat" ], "dept" : "Z", "fiscal_year" : 2017 }

orgArchive集合创建一个由fiscal_yeardept构成的复合唯一索引,也就是说相同的财年和部门最多只有一条记录:

js 复制代码
db.getSiblingDB("reporting").orgArchive.createIndex ( { fiscal_year: 1, dept: 1 }, { unique: true } )

在2019财年结束时,salaries集合包含下面的文档:

json 复制代码
{ "_id" : 1, "employee" : "Ant", "dept" : "A", "salary" : 100000, "fiscal_year" : 2017 }
{ "_id" : 2, "employee" : "Bee", "dept" : "A", "salary" : 120000, "fiscal_year" : 2017 }
{ "_id" : 3, "employee" : "Cat", "dept" : "Z", "salary" : 115000, "fiscal_year" : 2017 }
{ "_id" : 4, "employee" : "Ant", "dept" : "A", "salary" : 115000, "fiscal_year" : 2018 }
{ "_id" : 5, "employee" : "Bee", "dept" : "Z", "salary" : 145000, "fiscal_year" : 2018 }
{ "_id" : 6, "employee" : "Cat", "dept" : "Z", "salary" : 135000, "fiscal_year" : 2018 }
{ "_id" : 7, "employee" : "Gecko", "dept" : "A", "salary" : 100000, "fiscal_year" : 2018 }
{ "_id" : 8, "employee" : "Ant", "dept" : "A", "salary" : 125000, "fiscal_year" : 2019 }
{ "_id" : 9, "employee" : "Bee", "dept" : "Z", "salary" : 160000, "fiscal_year" : 2019 }
{ "_id" : 10, "employee" : "Cat", "dept" : "Z", "salary" : 150000, "fiscal_year" : 2019 }
{ "_id" : 11, "employee" : "Wren", "dept" : "Z", "salary" : 100000, "fiscal_year" : 2019 }
{ "_id" : 12, "employee" : "Zebra", "dept" : "A", "salary" : 150000, "fiscal_year" : 2019 }
{ "_id" : 13, "employee" : "headcount1", "dept" : "Z", "salary" : 120000, "fiscal_year" : 2020 }
{ "_id" : 14, "employee" : "headcount2", "dept" : "Z", "salary" : 120000, "fiscal_year" : 2020 }

下面的聚合管道将更新orgArchive集合2019财年的数据:

js 复制代码
db.getSiblingDB("zoo").salaries.aggregate( [
    { $match: { fiscal_year: 2019 }},
    { $group: { _id: { fiscal_year: "$fiscal_year", dept: "$dept" }, employees: { $push: "$employee" } } },
    { $project: { _id: 0, dept: "$_id.dept", fiscal_year: "$_id.fiscal_year", employees: 1 } },
    { $merge : { into : { db: "reporting", coll: "orgArchive" }, on: [ "dept", "fiscal_year" ], whenMatched: "fail" } }
] )

其中:

  • $match阶段查询出所有fiscal_year等于2019的文档。
  • $group阶段根据fiscal_yeardept对员工进行分组。
  • $project_id字段进行抑制,并增加单独的deptfiscal_year字段。当文档通过$merge阶段时,将自动产生一个新的_id字段。
  • $merge根据deptfiscal_year字段匹配到文档后将产生错误。

聚合运行后,orgArchive集合将包含下列文档:

json 复制代码
{ "_id" : ObjectId("5caccc6a66b22dd8a8cc419f"), "employees" : [ "Ahn", "Bess" ], "dept" : "A", "fiscal_year" : 2017 }
{ "_id" : ObjectId("5caccc6a66b22dd8a8cc419e"), "employees" : [ "Ahn", "Gee" ], "dept" : "A", "fiscal_year" : 2018 }
{ "_id" : ObjectId("5caccd0b66b22dd8a8cc438e"), "employees" : [ "Ahn", "Zeb" ], "dept" : "A", "fiscal_year" : 2019 }
{ "_id" : ObjectId("5caccc6a66b22dd8a8cc41a0"), "employees" : [ "Carl" ], "dept" : "Z", "fiscal_year" : 2017 }
{ "_id" : ObjectId("5caccc6a66b22dd8a8cc41a1"), "employees" : [ "Bess", "Carl" ], "dept" : "Z", "fiscal_year" : 2018 }
{ "_id" : ObjectId("5caccd0b66b22dd8a8cc438d"), "employees" : [ "Bess", "Carl", "Wen" ], "dept" : "Z", "fiscal_year" : 2019 }

说明:

orgArchive集合中已经存在2019年有两个部门"A"、"B"的文档,则聚合会因为键值重复执行失败,并且出错前已经插入的数据无法回滚。

若使用keepExisting选项,则不会对已存在的文档产生影响,不会报错。若使用replace处理,则会替换已存在的文档,也不会报错。

合并多个集合的结果

默认情况下,$merge会覆盖目标集合中重复的文档。

在集合purchaseorders中,插入季度和区域的订单信息:

js 复制代码
db.purchaseorders.insertMany( [
   { _id: 1, quarter: "2019Q1", region: "A", qty: 200, reportDate: new Date("2019-04-01") },
   { _id: 2, quarter: "2019Q1", region: "B", qty: 300, reportDate: new Date("2019-04-01") },
   { _id: 3, quarter: "2019Q1", region: "C", qty: 700, reportDate: new Date("2019-04-01") },
   { _id: 4, quarter: "2019Q2", region: "B", qty: 300, reportDate: new Date("2019-07-01") },
   { _id: 5, quarter: "2019Q2", region: "C", qty: 1000, reportDate: new Date("2019-07-01") },
   { _id: 6, quarter: "2019Q2", region: "A", qty: 400, reportDate: new Date("2019-07-01") },
] )

在集合reportedsales 中插入季度和区域的销售报告信息:

js 复制代码
db.reportedsales.insertMany( [
   { _id: 1, quarter: "2019Q1", region: "A", qty: 400, reportDate: new Date("2019-04-02") },
   { _id: 2, quarter: "2019Q1", region: "B", qty: 550, reportDate: new Date("2019-04-02") },
   { _id: 3, quarter: "2019Q1", region: "C", qty: 1000, reportDate: new Date("2019-04-05") },
   { _id: 4, quarter: "2019Q2", region: "B", qty: 500, reportDate: new Date("2019-07-02") },
] )

按照季度查看报告:

json 复制代码
{ "_id" : "2019Q1", "sales" : 1950, "purchased" : 1200 }
{ "_id" : "2019Q2", "sales" : 500, "purchased" : 1700 }

可以使用$mergepurchaseordersreportedsales集合进行合并,得到一个新的quarterlyreport集合,聚合:

js 复制代码
db.purchaseorders.aggregate( [
   { $group: { _id: "$quarter", purchased: { $sum: "$qty" } } },  // 按季度对订单进行分组
   { $merge : { into: "quarterlyreport", on: "_id",  whenMatched: "merge", whenNotMatched: "insert" } }
])
  • $group阶段按季度进行分组,并使用$sumqty累加,形成purchased字段
json 复制代码
{ "_id" : "2019Q2", "purchased" : 1700 }
{ "_id" : "2019Q1", "purchased" : 1200 }
  • $merge阶段将文档写入quarterlyreport集合,如果集合中有_id相同的文档则会合并,否则会插入新文档。

查询quarterlyreport集合文档数据:

js 复制代码
db.quarterlyreport.find().sort( { _id: 1 } )

结果:

json 复制代码
{ "_id" : "2019Q1", "sales" : 1200, "purchased" : 1200 }
{ "_id" : "2019Q2", "sales" : 1700, "purchased" : 1700 }

同样的,对reportedsales运行聚合管道,并将销售结果合并到quarterlyreport集合:

js 复制代码
db.reportedsales.aggregate( [
   { $group: { _id: "$quarter", sales: { $sum: "$qty" } } },  // 按季度对销售额汇总
   { $merge : { into: "quarterlyreport", on: "_id",  whenMatched: "merge", whenNotMatched: "insert" } }
])
  • $group阶段按quarter进行分组并使用$sumqty的合计值放到sales字段,得到:
json 复制代码
{ "_id" : "2019Q2", "sales" : 500 }
{ "_id" : "2019Q1", "sales" : 1950 }
  • merge阶段将文档输出到quarterlyreport集合,如果集合有相同_id(季度)的文档则进行合并,否则就插入新文档。

查询quarterlyreport的数据:

js 复制代码
db.quarterlyreport.find().sort( { _id: 1 } )

可以看到集合包含下面的文档:

json 复制代码
{ "_id" : "2019Q1", "sales" : 1950, "purchased" : 1200 }
{ "_id" : "2019Q2", "sales" : 500, "purchased" : 1700 }

使用管道定制合并

在匹配到文档时,$merge也可以使用自定义更新管道,whenMatched管道可以包含下面的这些阶段:

  • $addFields及其别名$set
  • $projecct及其别名$unset
  • $replaceRoot及其别名$replaceWith

下面的例子中,创建一个votes集合,包含了日常选票数据:

js 复制代码
db.votes.insertMany( [
   { date: new Date("2019-05-01"), "thumbsup" : 1, "thumbsdown" : 1 },
   { date: new Date("2019-05-02"), "thumbsup" : 3, "thumbsdown" : 1 },
   { date: new Date("2019-05-03"), "thumbsup" : 1, "thumbsdown" : 1 },
   { date: new Date("2019-05-04"), "thumbsup" : 2, "thumbsdown" : 2 },
   { date: new Date("2019-05-05"), "thumbsup" : 6, "thumbsdown" : 10 },
   { date: new Date("2019-05-06"), "thumbsup" : 13, "thumbsdown" : 16 }
] )

另外,创建一个monthlytotals集合,包含有最新的每月总票数:

js 复制代码
db.monthlytotals.insertOne(
   { "_id" : "2019-05", "thumbsup" : 26, "thumbsdown" : 31 }
)

最后,在创建一个votes集合,插入按日的选票数据:

js 复制代码
db.votes.insertOne(
   { date: new Date("2019-05-07"), "thumbsup" : 14, "thumbsdown" : 10 }
)

下面使用$merge的自定义管道,更新monthlytotals集合中已经存在的文档:

js 复制代码
db.votes.aggregate([
   { $match: { date: { $gte: new Date("2019-05-07"), $lt: new Date("2019-05-08") } } },
   { $project: { _id: { $dateToString: { format: "%Y-%m", date: "$date" } }, thumbsup: 1, thumbsdown: 1 } },
   { $merge: {
         into: "monthlytotals",
         on: "_id",
         whenMatched:  [
            { $addFields: {
                thumbsup: { $add:[ "$thumbsup", "$$new.thumbsup" ] },
                thumbsdown: { $add: [ "$thumbsdown", "$$new.thumbsdown" ] }
            } } ],
         whenNotMatched: "insert"
   } }
])

其中:

  • $match阶段查询指定日期的选票:

    json 复制代码
    { "_id" : ObjectId("5ce6097c436eb7e1203064a6"), "date" : ISODate("2019-05-07T00:00:00Z"), "thumbsup" : 14, "thumbsdown" : 10 }
  • $project阶段,设置_id字段为年-月字符串:\

    json 复制代码
    { "thumbsup" : 14, "thumbsdown" : 10, "_id" : "2019-05" }
  • $merge阶段,将文档写入monthlytotals集合,如果存在_id匹配到的文档,则使用管道添加thumbsupthumbsdown的投票

    • 管道不能直接访问聚合结果的字段,要访问thumbsupthumbsdown字段,需要使用$$new变量,如:$$new.thumbsup$new.thumbsdown
    • 对于集合中已存在的文档,管道可以直接访问thumbsupthumbsdown字段,如:$thumbsup$thumbsdown

聚合运行后,使用下面的指令查询monthlytotals集合数据:

js 复制代码
db.monthlytotals.find()

结果:

json 复制代码
{ "_id" : "2019-05", "thumbsup" : 40, "thumbsdown" : 41 }

使用变量自定义合并

$merge阶段的whenMatched字段,还可以使用变量,但变量在使用前必须提前定义,定义字段有两种方式:

  • $merge阶段使用let进行定义
  • 使用聚合命令let(从MongoDB5.0开始支持)

whenMatched中使用变量,必须以$$符号为前缀指定变量名$$<variable_name>,如:$$year。如果变量是文档,也可以包含文档字段,格式为$$<变量名>.<字段>。例如,$$year.month

在Merge阶段使用变量

$merge阶段使用let定义变量,并在whenMatched字段使用变量:

js 复制代码
db.cakeSales.insertOne( [
   { _id: 1, flavor: "chocolate", salesTotal: 1580,
     salesTrend: "up" }
] )

db.runCommand( {
   aggregate: db.cakeSales.getName(),
   pipeline: [ {
      $merge: {
         into: db.cakeSales.getName(),
         let : { year: "2020" },
         whenMatched: [ {
            $addFields: { "salesYear": "$$year" }
         } ]
      }
   } ],
   cursor: {}
} )

db.cakeSales.find()

说明:

  • 创建cakeSales集合并插入数据
  • 运行聚合执行,指令中使用let定义了year变量,并在whenMatched中把year赋值给字段salesYear
  • 查询cakeSales集合文档

输出:

json 复制代码
{ "_id" : 1, "flavor" : "chocolate", "salesTotal" : 1580,
  "salesTrend" : "up", "salesYear" : "2020" }
在聚合命令中使用变量

从Mongodb5.0开始,可以在聚合命令中使用let定义变量,并在$merge阶段的whenMatched字段中引用。

举例:

js 复制代码
db.cakeSales.insertOne(
   { _id: 1, flavor: "chocolate", salesTotal: 1580,
     salesTrend: "up" }
)

db.runCommand( {
   aggregate: db.cakeSales.getName(),
      pipeline: [ {
         $merge: {
            into: db.cakeSales.getName(),
            whenMatched: [ {
               $addFields: { "salesYear": "$$year" } }
            ] }
         }
   ],
   cursor: {},
   let : { year: "2020" }
} )

db.cakeSales.find()

说明:

  • 创建一个cakeSales集合并插入数据
  • 运行聚合命令,使用let定义一个year变量,在whenMatched中将year变量赋值给salesYear字段。
  • 显示cakeSales文档

输出:

json 复制代码
{ "_id" : 1, "flavor" : "chocolate", "salesTotal" : 1580,
  "salesTrend" : "up", "salesYear" : "2020" }
同时在Merge和聚合命令中定义变量

可以同时在Merge阶段和命令中定义变量。如果在$merge阶段和聚合命令中定义了同名的变量,则优先$merge阶段的变量。

在下面的例子中,$merge节点定义了year变量,值为"2020",另外在聚合命令中也定义了year变量,值为"2019",运行下面的命令:

js 复制代码
db.cakeSales.insertOne(
   { _id: 1, flavor: "chocolate", salesTotal: 1580,
     salesTrend: "up" }
)

db.runCommand( {
   aggregate: db.cakeSales.getName(),
      pipeline: [ {
         $merge: {
            into: db.cakeSales.getName(),
            let : { year: "2020" },
            whenMatched: [ {
               $addFields: { "salesYear": "$$year" }
            } ]
         }
      } ],
   cursor: {},
   let : { year: "2019" }
} )

db.cakeSales.find()

结果:

js 复制代码
{
  _id: 1,
  flavor: 'chocolate',
  salesTotal: 1580,
  salesTrend: 'up',
  salesYear: '2020'
}
相关推荐
CoderIsArt1 小时前
Redis的三种模式:主从模式,哨兵与集群模式
数据库·redis·缓存
师太,答应老衲吧3 小时前
SQL实战训练之,力扣:2020. 无流量的帐户数(递归)
数据库·sql·leetcode
Channing Lewis4 小时前
salesforce case可以新建一个roll up 字段,统计出这个case下的email数量吗
数据库·salesforce
毕业设计制作和分享5 小时前
ssm《数据库系统原理》课程平台的设计与实现+vue
前端·数据库·vue.js·oracle·mybatis
ketil275 小时前
Redis - String 字符串
数据库·redis·缓存
Hsu_kk6 小时前
MySQL 批量删除海量数据的几种方法
数据库·mysql
编程学无止境6 小时前
第02章 MySQL环境搭建
数据库·mysql
knight-n6 小时前
MYSQL库的操作
数据库·mysql
包饭厅咸鱼7 小时前
QML----复制指定下标的ListModel数据
开发语言·数据库
生命几十年3万天8 小时前
redis时间优化
数据库·redis·缓存