Gin 集成 prometheus 客户端实现注册和暴露指标

前言

当我们构建一个 Web 应用程序时,了解应用程序的性能和行为是非常重要的。Prometheus 是一个流行的开源监控系统,它提供了强大的指标收集和查询功能,可以帮助我们监控应用程序的各个方面。

在 Gin 中集成 Prometheus 可以让我们更方便地监控和收集应用程序的性能指标,从而帮助我们更好地理解应用程序的运行状态。

Prometheus 是什么?

Prometheus 是一套开源的监控和警报系统。它旨在帮助开发人员和系统管理员对大规模分布式系统进行监控,并能够及时发现和解决问题。

以下是 Prometheus 的一些主要特点和功能:

  1. 多维度数据模型:Prometheus 使用多维度数据模型来存储时间序列数据,每个时间序列都由一个唯一的标识符(称为指标名称)和一组键值对(称为标签)来表示。这种灵活的数据模型使得Prometheus能够高效地处理和查询大量的度量数据。

  2. 灵活的查询语言:Prometheus 提供了一种强大的查询语言,称为PromQL(Prometheus Query Language),用于对指标数据进行查询、聚合和分析。PromQL 支持各种常见的操作,如过滤、排序、计算等,使用户能够轻松地提取有用的信息并生成自定义的监控指标。

  3. 规则引擎和警报机制:Prometheus 内置了一个规则引擎,可以根据用户定义的规则对指标数据进行处理和计算,并生成警报。用户可以配置警报规则,当指标数据达到或超过某个阈值时,Prometheus 将触发相应的警报动作,如发送通知、执行脚本等。

  4. 可视化和报表:Prometheus 提供了一个简单易用的 Web 界面,可以用于实时监控和可视化指标数据。该界面支持图表展示、仪表盘配置和数据导出等功能,使用户能够直观地了解系统的运行情况。

  5. 服务发现和自动化:Prometheus 支持多种服务发现机制,如静态配置、目录服务、Kubernetes 集成等。它可以自动发现和监控新加入的目标,并根据配置自动调整监控策略,从而实现对动态环境的自动化监控。

  6. 可扩展性和集成性:Prometheus 具有高度可扩展的架构,可以处理数千个节点和百万级别的时间序列数据。它还提供了丰富的API和插件机制,可与其他工具和服务(如 Grafana、Alertmanager 等)进行集成,实现更全面的监控和警报功能。

总结:Prometheus 是一套功能强大、灵活可扩展的监控和警报系统,适用于各种规模和类型的分布式系统。它通过多维度数据模型、灵活的查询语言和强大的警报机制,帮助用户实时监控系统的性能和状态,并及时采取行动来解决潜在问题。

为什么集成 Prometheus?

  1. 实时监控:集成 Prometheus 可以实时监控你的 Gin 应用程序的性能指标。通过收集和记录请求次数、持续时间、错误率等指标,你可以快速了解应用程序的运行情况,并及时发现潜在的性能问题。

  2. 警报和自动化:Prometheus 还提供了警报功能,可以根据预设的阈值条件,自动触发警报通知。通过集成 Prometheus,你可以在应用程序出现异常或达到预定的性能指标时,及时获得通知,以便快速采取行动。

  3. 数据可视化:Prometheus 提供了 Grafana 等工具,可以将收集到的指标数据进行可视化展示。你可以创建仪表盘,实时地监控应用程序的性能指标,并轻松地进行趋势分析和故障排除。

集成 Prometheus 的好处

  1. 性能优化:通过 Prometheus 记录的指标数据,你可以深入了解应用程序的性能瓶颈和热点,进而进行有针对性的性能优化。你可以分析请求次数、持续时间、错误率等指标,并找出影响性能的关键路径,从而改进应用程序的效率。

  2. 容量规划:借助 Prometheus 收集的指标数据,你可以更好地了解应用程序的负载情况和资源利用率。通过对请求次数、并发连接数、内存使用量等指标的观察,你可以准确评估应用程序的容量需求,规划服务器资源,以支持应用程序的高可用性和扩展性。

  3. 故障排除:当应用程序出现异常或性能下降时,Prometheus 可以帮助你快速定位问题的根源。通过查看相关的指标数据和日志信息,你可以迅速发现故障原因,并进行及时修复,以减少长时间的服务中断和用户投诉。

Go Prometheus Client 介绍

组件:https://github.com/prometheus/client_golang

client_golang 是 Prometheus 社区提供的一个 Go 语言客户端库,用于在 Go 应用程序中集成和使用 Prometheus 监控系统。它提供了一系列功能丰富的 API,使开发人员能够方便地暴露指标数据、收集指标数据并与 Prometheus 进行交互。

以下是 client_golang 的一些主要特性和功能:

  1. 指标类型:client_golang 提供了多种常用的指标类型,包括 Counter、Gauge、Histogram、Summary 等。开发人员可以根据需求选择合适的指标类型,并使用简单的方法来收集和更新指标数据。

  2. 标签支持:client_golang 支持为指标数据添加标签,以便更灵活地对指标数据进行分类和分析。标签可以用于细分指标数据,例如按照不同的维度、服务或实例进行区分,从而更准确地了解系统的运行情况。

  3. 注册和暴露指标:client_golang 提供了 Register() 函数用于注册指标对象,并使用promhttp.Handler() 函数创建一个 HTTP 处理程序,用于暴露指标数据给Prometheus 服务器。这样,Prometheus 就可以通过 HTTP 协议获取指标数据并进行监控和分析。

  4. 指标收集和更新:client_golang 提供了一系列方法来收集和更新指标数据,例如使用 Inc() 和 Dec() 方法增加或减少计数器的值,使用 Set() 方法更新 Gauge 的值等。开发人员可以根据自己的需求选择合适的方法来操作指标数据。

  5. 兼容性和扩展性:client_golang 与 Prometheus 的数据模型和查询语言完全兼容,能够无缝地集成到 Prometheus 生态系统中。它还提供了丰富的扩展机制,例如Pushgateway、Exporter、Collector 等,使开发人员能够更灵活地管理和处理指标数据。

  6. 文档和示例:client_golang 提供了详细的文档和丰富的示例代码,帮助开发人员快速上手并理解如何使用该库。文档中包含了 API 参考、最佳实践、常见问题解答等内容,使开发人员能够更好地利用 client_golang 进行监控和警报。

总结:client_golang 是 Prometheus 社区提供的一个功能强大、易于使用的 Go 语言客户端库,用于在 Go 应用程序中集成和使用 Prometheus 监控系统。它提供了多种指标类型、标签支持、注册和暴露指标、指标收集和更新等功能,帮助开发人员方便地暴露和收集指标数据,并与 Prometheus 进行交互,实现全面的监控和警报功能。

项目中如何使用?

1. 开启指标记录

文件地址:./internal/router/router.go

go 复制代码
mux, err := core.New(logger,
 core.WithEnableCors(),
 core.WithEnableSwagger(),
 core.WithEnablePProf(),
 core.WithEnablePrometheus(metrics.RecordHandler()),
)

启用时,增加参数:core.WithEnablePrometheus(metrics.RecordHandler()) 即可。

2. 定义指标所需信息

文件地址:./internal/proposal/metrics.go

go 复制代码
// MetricsMessage 指标信息
type MetricsMessage struct {
 HOST         string  `json:"host"`          // 请求 HOST
 Path         string  `json:"path"`          // 请求 Path
 Method       string  `json:"method"`        // 请求 Method
 HTTPCode     int     `json:"http_code"`     // HTTP 状态码
 BusinessCode int     `json:"business_code"` // 业务码
 CostSeconds  float64 `json:"cost_seconds"`  // 耗时,单位:秒
 IsSuccess    bool    `json:"is_success"`    // 状态,是否成功
}

3. 指标注册

文件地址:./internal/metrics/prometheus.go

go 复制代码
// metricsRequestsTotal metrics for request total 计数器(Counter)
var metricsRequestsTotal = prometheus.NewCounterVec(
 prometheus.CounterOpts{
  Namespace: namespace,
  Subsystem: subsystem,
  Name:      "requests_total",
  Help:      "request(ms) total",
 },
 []string{"method", "path"},
)

// metricsRequestsCost metrics for requests cost 累积直方图(Histogram)
var metricsRequestsCost = prometheus.NewHistogramVec(
 prometheus.HistogramOpts{
  Namespace: namespace,
  Subsystem: subsystem,
  Name:      "requests_cost",
  Help:      "request(ms) cost milliseconds",
 },
 []string{"method", "path", "success", "http_code", "business_code", "cost_milliseconds"},
)

// 根据需要,可定制其他指标,操作如下:
// 1. 定义需要的指标
// 2. init() 中注册
// 3. RecordMetrics() 中传值

4. 指标收集

文件地址:./internal/metrics/metrics.go

go 复制代码
// RecordHandler 指标处理
func RecordHandler() func(msg *proposal.MetricsMessage) {
 return func(msg *proposal.MetricsMessage) {
  RecordMetrics(
   msg.Method,
   msg.Path,
   msg.IsSuccess,
   msg.HTTPCode,
   msg.BusinessCode,
   msg.CostSeconds,
  )
 }
}

5. 指标暴露

路由地址:http://127.0.0.1:9999/metrics

go 复制代码
if opt.enablePrometheus {
 mux.engine.GET("/metrics", gin.WrapH(promhttp.Handler())) // register prometheus
}

项目代码

相关推荐
RationalDysaniaer20 小时前
Gin入门笔记
笔记·gin
千年死缓20 小时前
gin中间件
中间件·gin
逻辑与&&1 天前
[Prometheus学习笔记]从架构到案例,一站式教程
笔记·学习·prometheus
Walden-20201 天前
构建基于 DCGM-Exporter, Node exporter,PROMETHEUS 和 GRAFANA 构建算力监控系统
docker·容器·grafana·prometheus
牛角上的男孩2 天前
部署Prometheus、Grafana、Zipkin、Kiali监控度量Istio
grafana·prometheus·istio
福大大架构师每日一题3 天前
文心一言 VS 讯飞星火 VS chatgpt (383)-- 算法导论24.5 3题
prometheus
codists5 天前
《使用Gin框架构建分布式应用》阅读笔记:p393-p437
golang·gin·编程人
景天科技苑5 天前
【Golang】Gin框架中如何使用JWT来实现登录认证
开发语言·golang·gin·jwt·登录认证·go jwt
小安运维日记6 天前
Linux云计算 |【第五阶段】CLOUD-DAY10
linux·运维·云计算·k8s·grafana·prometheus
福大大架构师每日一题6 天前
29.2 golang实战项目log2metrics架构说明
架构·prometheus