3D Gaussian Splatting复现

最近3D Gaussian Splatting很火,网上有很多复现过程,大部分都是在Windows上的。Linux上配置环境会方便简单一点,这里记录一下我在Linux上复现的过程。

Windows下的环境配置和编译,建议看这个up主的视频配置,讲解的很细致:3D Gaussian Splatting從0開始到Unreal與Unity-( pzman )_哔哩哔哩_bilibili


预先准备

一支MP4格式的视频,可以是你用手机拍摄的任何一个你想要重建的物体或者环境的视频。

Gaussian Splatting的源码,源码地址:GitHub - graphdeco-inria/gaussian-splatting: Original reference implementation of "3D Gaussian Splatting for Real-Time Radiance Field Rendering"


一、环境配置与准备

1.下载Gaussian Splatting的源码

bash 复制代码
git clone https://github.com/graphdeco-inria/gaussian-splatting --recursive

2.安装CUDA

这个这里就不赘述了,需要注意的是官方说使用11.6版本的CUDA会有问题,。官方使用的是11.8版本的,所以需要确保你的CUDA版本高于11.8,使用下面的命令查看你的CUDA版本:

bash 复制代码
nvcc --version

3.使用conda安装依赖库,并创建虚拟环境

首先进入上面从GitHub上clone下载来的gaussian-splatting源码路径,在里面我们可以看到一个 environment.yml 文件,里面提供了需要的依赖库的名字,直接使用下面的命令执行会自动为你创建一个名为 gaussian_splatting 的conda虚拟环境,并开始安装所需要的依赖库:

bash 复制代码
conda env create --file environment.yml

等待安装完毕后,激活创建的conda虚拟环境:

bash 复制代码
conda activate gaussian_splatting

4.安装FFmpeg

这里主要是为了提取拍摄的视频中的图片,如果有数据集的话也可以不用安装。

由于安装别的依赖的时候,可能会装了FFmpeg,但是使用起来会有问题。这里建议先把环境中使用FFmpeg删除再重新安装:

bash 复制代码
// 删除所有安装的 ffmpeg
sudo apt-get remove ffmpeg
sudo apt-get purge ffmpeg
// 删除 Anaconda ffmpeg 模块
conda remove ffmpeg
重新安装
sudo apt-get install ffmpeg

5.安装colmap

这里安装colmap是为了从图片生成点云,因为gaussian splatting的输入是点云。如果有colmap生成的数据集或者NeRF格式的数据集也可以直接使用。

编译安装colmap可以查看我的另一篇博客:Linux 编译安装colmap_linux colmap-CSDN博客

6.安装viewers

这个工具是最后查看我们训练完后的结果的可视化,这里建议下载Windows下的,把Linux下的训练结果放到Windows下查看。因为Linux下需要源码编译,比较麻烦。

Windows安装包下载地址:https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/binaries/viewers.zip


二、开始训练

1.首先进入Gaussian Splatting源码的路径下,然后创建一个data文件夹,并把准备的MP4格式的视频放到data文件夹下,我这里视频的名字为input.MP4。

2.使用FFmpeg截取视频帧为图片,在data目录下创建input目录,使用下面的代码可以截取视频帧并把图片放到input目录下:

bash 复制代码
ffmpeg -i input.mp4 -vf "setpts=0.2*PTS" input/input_%4d.jpg

3.进入到源码的目录下,使用源码中的 convert.py 文件生成点云,其中就是调用colmap生成点云,所以需要先安装好colmap,运行后的data文件夹中目录结构如下:

bash 复制代码
python convert.py -s data

4.开始训练,接下来等待训练完即可:

bash 复制代码
python train.py -s data -m data/output

训练完成后,可以看到在data文件夹下生成了一个output文件夹,里面就是我们的训练结果。input.ply是描述重建后的顶点和表面的模型文件,point_cloud下是7000步和30000步时的训练结果:

5.最后一步,可视化训练的结果。

这里是在Windows下使用的官方提供的Viewer工具,下载链接放在上面了,下载完后只要解压就行了。解压后是一个名字是viewers的文件夹,进入这个文件夹,然后把训练结果的output文件夹放在下面,在该文件夹下打开cmd,使用下面的命令运行:

bash 复制代码
.\bin\SIBR_gaussianViewer_app -m output

大功告成!

相关推荐
大霞上仙20 分钟前
nonlocal 与global关键字
开发语言·python
Mark_Aussie1 小时前
Flask-SQLAlchemy使用小结
python·flask
程序员阿龙1 小时前
【精选】计算机毕业设计Python Flask海口天气数据分析可视化系统 气象数据采集处理 天气趋势图表展示 数据可视化平台源码+论文+PPT+讲解
python·flask·课程设计·数据可视化系统·天气数据分析·海口气象数据·pandas 数据处理
ZHOU_WUYI1 小时前
Flask与Celery 项目应用(shared_task使用)
后端·python·flask
且慢.5891 小时前
Python_day47
python·深度学习·计算机视觉
佩奇的技术笔记2 小时前
Python入门手册:异常处理
python
大写-凌祁2 小时前
论文阅读:HySCDG生成式数据处理流程
论文阅读·人工智能·笔记·python·机器学习
爱喝喜茶爱吃烤冷面的小黑黑2 小时前
小黑一层层削苹果皮式大模型应用探索:langchain中智能体思考和执行工具的demo
python·langchain·代理模式
Blossom.1183 小时前
使用Python和Flask构建简单的机器学习API
人工智能·python·深度学习·目标检测·机器学习·数据挖掘·flask
Love__Tay4 小时前
【学习笔记】Python金融基础
开发语言·笔记·python·学习·金融