Lifecycle的使用和源码解析

什么是Lifecycle

Lifecycle是生命周期感知型组件,它可以通过响应另一个组件(Activity或Fragment)的生命周期的变化来执行相应的操作,它有助于产出更有条理、更轻量级、更易于维护的代码。

Lifecycle是LiveData和ViewModel的基础,下面就先介绍为何使用Lifecycle及如何使用Lifecycle。

使用Lifecycle之前

假设我们有一个在屏幕上显示设备位置信息的Activity。常见的实现可能如下所示:

java 复制代码
    class MyLocationListener {

        public MyLocationListener(Context context, Callback callback) {
            // ...
        }

        void start() {
            // 开启定位服务
        }

        void stop() {
            // 停止定位服务
        }
    }

    class MyActivity extends AppCompatActivity {

        private MyLocationListener myLocationListener;

        @Override
        public void onCreate(...) {
            myLocationListener = new MyLocationListener(this, (location) -> {
                // 更新 UI
            });
        }

        @Override
        public void onStart() {
            super.onStart();
            myLocationListener.start();
        }

        @Override
        public void onStop() {
            super.onStop();
            myLocationListener.stop();
        }
    }

上面的示例看起来好像没问题,但是在实际的应用中,你需要在Activity对应的生命周期方法(如上例中的onStart()、onStop()方法)中写很多代码来管理UI和其他组件,这时候你就会发现这些代码很难维护。

此外,无法保证Activity在执行onStop()方法之前执行myLocationListener的start()方法,例如下面这种情况:

java 复制代码
class MyActivity extends AppCompatActivity {
    private MyLocationListener myLocationListener;

    public void onCreate(...) {
        myLocationListener = new MyLocationListener(this, location -> {
            // 更新 UI
        });
    }

    @Override
    public void onStart() {
        super.onStart();
        Util.checkUserStatus(result -> {
            //如果checkUserStatus()方法耗时较长,在activity执行完onStop()方法后才回调,
            //那么myLocationListener执行完start()方法后就没办法走stop()方法了,
            //又因为myLocationListener持有activity,会造成内存泄漏。
            if (result) {
                myLocationListener.start();
            }
        });
    }

    @Override
    public void onStop() {
        super.onStop();
        myLocationListener.stop();
    }
}

这样就导致myLocationListener不能按照预期执行stop()方法,又因为myLocationListener持有Activity的引用,从而导致内存泄漏。

上面出现了2个问题:

  1. Activity的生命周期方法中存在大量管理其他组件的代码,难以维护;
  2. 无法保证在退出Activity前执行相应的回收方法,容易导致内存泄露问题;

而Lifecycle可以帮助你解决这些问题。

Lifecycle的使用

引入依赖

  1. 非androidx项目引入:
arduino 复制代码
implementation "android.arch.lifecycle:extensions:1.1.1"
  1. androidx项目引入:
arduino 复制代码
implementation 'androidx.appcompat:appcompat:1.2.0'

因为appcompat依赖了androidx.fragment,而androidx.fragment下依赖了ViewModel和LiveData,LiveData内部又依赖了Lifecycle。

  1. 如果想要单独引入依赖,官方给出的依赖如下:
kotlin 复制代码
//app的build.gradle
dependencies {
    def lifecycle_version = "2.2.0"
    def arch_version = "2.1.0"

    // ViewModel
    implementation "androidx.lifecycle:lifecycle-viewmodel:$lifecycle_version"
    // LiveData
    implementation "androidx.lifecycle:lifecycle-livedata:$lifecycle_version"
    // 只有Lifecycles (不带 ViewModel or LiveData)
    implementation "androidx.lifecycle:lifecycle-runtime:$lifecycle_version"

    // Saved state module for ViewModel
    implementation "androidx.lifecycle:lifecycle-viewmodel-savedstate:$lifecycle_version"

    // lifecycle注解处理器
    annotationProcessor "androidx.lifecycle:lifecycle-compiler:$lifecycle_version"
    // 替换 - 如果使用Java8,就用这个替换上面的lifecycle-compiler
    implementation "androidx.lifecycle:lifecycle-common-java8:$lifecycle_version"

        //以下按需引入
    // 可选 - 帮助实现Service的LifecycleOwner
    implementation "androidx.lifecycle:lifecycle-service:$lifecycle_version"
    // 可选 - ProcessLifecycleOwner给整个 app进程 提供一个lifecycle
    implementation "androidx.lifecycle:lifecycle-process:$lifecycle_version"
    // 可选 - ReactiveStreams support for LiveData
    implementation "androidx.lifecycle:lifecycle-reactivestreams:$lifecycle_version"
    // 可选 - Test helpers for LiveData
    testImplementation "androidx.arch.core:core-testing:$arch_version"
}

看着有很多,实际上如果只使用Lifecycle,只需要引入lifecycle-runtime即可,但通常都是和 ViewModel、 LiveData 配套使用的,所以lifecycle-viewmodel、lifecycle-livedata 一般也会引入。另外,lifecycle-process是给整个app进程提供一个lifecycle,后面也会提到。

基本使用

Lifecycle的使用方法很简单,主要分为2步:

  1. 生命周期拥有者使用getLifecycle()获取Lifecycle实例,然后调用addObserver()添加观察者;
  2. 观察者实现LifecycleObserver,方法上使用@OnLifecycleEvent注解关注对应的生命周期,生命周期触发时就会执行相应的方法;

代码如下:

java 复制代码
class LifecycleTestActivity : AppCompatActivity() {

    private val TAG = LifecycleTestActivity::class.java.simpleName

    override fun onCreate(savedInstanceState: Bundle?) {
        super.onCreate(savedInstanceState)

        lifecycle.addObserver(MyObserver())
    }

    override fun onResume() {
        super.onResume()
        Log.i(TAG, "onResume: ")
    }

    override fun onPause() {
        super.onPause()
        Log.i(TAG, "onPause: ")
    }
}

class MyObserver : LifecycleObserver {

    private val TAG = "LifeCycleTest_MyObserver"

    @OnLifecycleEvent(Lifecycle.Event.ON_RESUME)
    fun connect() = Log.d(TAG,"connect run ...")

    @OnLifecycleEvent(Lifecycle.Event.ON_PAUSE) 
    fun disconnect() = Log.d(TAG,"disconnect run ...")
}

运行后打印如下:

arduino 复制代码
LifecycleTestActivity   com.example.test   I  onResume: 
LifeCycleTest_MyObserver com.example.test  D  connect run ...
LifeCycleTest_MyObserver com.example.test  D  disconnect run ...
LifecycleTestActivity   com.example.test   I  onPause: 

这里看到connect run ...onResume:之前打印,而disconnect run ...onPause:之后打印,这是为什么呢?这个问题我们留到后面分析源码的时候再来解释。

自定义LifecycleOwner

直接在Activity中使用getLifecycle()就能获取到Lifecycle实例,getLifecycle()方法来自接口LifecycleOwner:

java 复制代码
public interface LifecycleOwner {
    @NonNull
    Lifecycle getLifecycle();
}

如果一个类实现了LifecycleOwner就表示这个类具有生命周期,你也可以自定义类实现LifecycleOwner接口。

support library 26.1.0及以上的Fragment和Activity已实现LifecycleOwner接口,所以我们在Activity中可以直接使用getLifecycle()方法。

如果你想要自己定义一个类实现LifecycleOwner接口,你可以使用LifecycleRegistry,它是Lifecycle的实现类,但你需要将事件转发到LifecycleRegistry:

java 复制代码
public class MyActivity extends Activity implements LifecycleOwner {

    private LifecycleRegistry lifecycleRegistry;
    
    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);

        lifecycleRegistry = new LifecycleRegistry(this);
        lifecycleRegistry.markState(Lifecycle.State.CREATED);
    }
    
    @Override
    public void onStart() {
        super.onStart();
        lifecycleRegistry.markState(Lifecycle.State.STARTED);
    }
    
    @NonNull
    @Override
    public Lifecycle getLifecycle() {
        return lifecycleRegistry;
    }
}

MyActivity实现了LifecycleOwner接口,getLifecycle()返回lifecycleRegistry实例。lifecycleRegistry实例是在onCreate()方法中创建的,并且在各个生命周期内调用markState()方法完成生命周期事件的传递。这就完成了LifecycleOwner的自定义,也即MyActivity变成了LifecycleOwner,然后就可以和实现了LifecycleObserver接口的类配合使用了。

补充一点,观察者的方法可以接受一个参数LifecycleOwner,就可以用来获取当前状态、或者继续添加观察者。 若注解的是ON_ANY还可以接收Event,用于区分是哪个事件。如下:

java 复制代码
class TestObserver implements LifecycleObserver {

    @OnLifecycleEvent(Lifecycle.Event.ON_CREATE)
    void onCreated(LifecycleOwner owner) {
        //owner.getLifecycle().addObserver(anotherObserver);
        //owner.getLifecycle().getCurrentState();
    }

    @OnLifecycleEvent(Lifecycle.Event.ON_ANY)
    void onAny(LifecycleOwner owner, Lifecycle.Event event) {
        //event.name()
    }

}

MVP架构中使用Lifecycle

在MVP架构中可以把presenter作为观察者:

java 复制代码
public class LifecycleTestActivity extends AppCompatActivity implements IView {
    private String TAG = "Lifecycle_Test";

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_lifecycle_test);
        //Lifecycle 生命周期
        //getLifecycle().addObserver(new MyObserver());

        //MVP中使用Lifecycle
        getLifecycle().addObserver(new MyPresenter(this));
        Log.i(TAG, "onCreate: ");
    }

    @Override
    protected void onResume() {
        super.onResume();
        Log.i(TAG, "onResume: ");
    }
    @Override
    protected void onPause() {
        super.onPause();
        Log.i(TAG, "onPause: ");
    }

    @Override
    public void showView() {}
    @Override
    public void hideView() {}
}

//Presenter
class MyPresenter implements LifecycleObserver {
    private static final String TAG = "Lifecycle_Test";
    private final IView mView;

    public MyPresenter(IView view) {mView = view;}

    @OnLifecycleEvent(value = Lifecycle.Event.ON_START)
    private void getDataOnStart(LifecycleOwner owner){
        Log.i(TAG, "getDataOnStart: ");

        Util.checkUserStatus(result -> {
                //checkUserStatus是耗时操作,回调后检查当前生命周期状态
                if (owner.getLifecycle().getCurrentState().isAtLeast(STARTED)) {
                	start();
                    mView.showView();
                }
            });
    }
    @OnLifecycleEvent(value = Lifecycle.Event.ON_STOP)
    private void hideDataOnStop(){
        Log.i(TAG, "hideDataOnStop: ");
        stop();
        mView.hideView();
    }
}

//IView
interface IView {
    void showView();
    void hideView();
}

这里是让Presenter实现LifecycleObserver接口,同样在方法上注解要触发的生命周期,最后在Activity中作为观察者添加到Lifecycle中。

这样做好处是啥呢? 当Activity生命周期发生变化时,MyPresenter就可以感知并执行方法,不需要在MainActivity的多个生命周期方法中调用MyPresenter的方法了。

Presenter类自动感知生命周期,如果需要在其他的Activity或Fragment也使用这个Presenter,只需添加其为观察者即可。让Presenter存储自己的逻辑,减轻Activity或Fragment中代码,更易于管理;

另外,注意到 getDataOnStart()中耗时校验回调后,对当前生命周期状态进行了检查:至少处于STARTED状态才会继续执行start()方法,也就是保证了Activity停止后不会走start()方法;

这样,使用LifeCycle后,文章前面遇到的2个问题得到了解决。

Application生命周期 ProcessLifecycleOwner

之前对App进入前后台的判断是通过registerActivityLifecycleCallbacks(callback)方法,然后在callback中利用一个全局变量做计数,在onActivityStarted()中计数加1,在onActivityStopped方法中计数减1,从而判断前后台切换。

而使用ProcessLifecycleOwner可以直接获取应用前后台切换状态。(记得先引入lifecycle-process依赖)

使用方式和Activity中类似,只不过要使用ProcessLifecycleOwner.get()获取ProcessLifecycleOwner,代码如下:

java 复制代码
public class MyApplication extends Application {

    @Override
    public void onCreate() {
        super.onCreate();

	    //注册App生命周期观察者
        ProcessLifecycleOwner.get().getLifecycle().addObserver(new ApplicationLifecycleObserver());
    }
    
    /**
     * Application生命周期观察,提供整个应用进程的生命周期
     *
     * Lifecycle.Event.ON_CREATE只会分发一次,Lifecycle.Event.ON_DESTROY不会被分发。
     *
     * 第一个Activity进入时,ProcessLifecycleOwner将分派Lifecycle.Event.ON_START, Lifecycle.Event.ON_RESUME。
     * 而Lifecycle.Event.ON_PAUSE, Lifecycle.Event.ON_STOP,将在最后一个Activit退出后后延迟分发。如果由于
     * 配置更改而销毁并重新创建活动,则此延迟足以保证ProcessLifecycleOwner不会发送任何事件。
     *
     * 作用:监听应用程序进入前台或后台
     */
    private static class ApplicationLifecycleObserver implements LifecycleObserver {
        @OnLifecycleEvent(Lifecycle.Event.ON_START)
        private void onAppForeground() {
            Log.w(TAG, "ApplicationObserver: app moved to foreground");
        }

        @OnLifecycleEvent(Lifecycle.Event.ON_STOP)
        private void onAppBackground() {
            Log.w(TAG, "ApplicationObserver: app moved to background");
        }
    }
}

看到确实很简单,和前面Activity的Lifecycle用法几乎一样,而我们使用ProcessLifecycleOwner就显得很优雅了,生命周期分发逻辑已在注释里说明。

源码分析

本文源码基于androidx.lifecycle:lifecycle-runtime:2.3.1

Lifecycle持有另一个组件(比如Activity或Fragment)的生命周期状态有关的信息,主要使用两个枚举类型来追踪与其关联的组件的生命周期状态,Lifecycle代码如下:

java 复制代码
public abstract class Lifecycle {

    @MainThread
    public abstract void addObserver(@NonNull LifecycleObserver observer);

    @MainThread
    public abstract void removeObserver(@NonNull LifecycleObserver observer);

    @MainThread
    @NonNull
    public abstract State getCurrentState();

    //对应LifecycleOwner的Event
    public enum Event {
        ON_CREATE,
        ON_START,
        ON_RESUME,
        ON_PAUSE,
        ON_STOP,
        ON_DESTROY,
        ON_ANY;
    }

    //对应LifecycleOwner的状态
    public enum State {
        //此事件后,Lifecycle将不再分发事件。对于Activity来说,
        //在Activity的onDestroy()方法调用之前到达这个状态。
        DESTROYED,

        //对于Activity来说,这是Activity已经构建但是onCreate()方法调用前的状态。
        INITIALIZED,

        //对于Activity来说,这是Activity调用onCreate()后,调用onStop()前的状态。
        CREATED,

        //对于Activity来说,这是Activity调用onStart()后,调用onPause()前的状态。
        STARTED,

        //对于Activity来说,是调用Activity的onResume()方法后到达的状态。
        RESUMED;

        //比较当前状态是否>=传入的状态
        public boolean isAtLeast(@NonNull State state) {
            return compareTo(state) >= 0;
        }
    }
}

这两个枚举类型分别是:

  • Event:分发的生命周期事件,对应于Activity或Fragment中的生命周期方法。
  • State:LifecycleOwner当前的状态。

关于Activity中State与Event的关系,官网有张图很清晰: 其中State是图中的一个个节点,Event是这些节点之间的过渡。

被观察者流程

前面提到Activity实现了LifecycleOwner,所以才能直接使用getLifecycle()方法,具体是在androidx.activity.ComponentActivity中,我们来看看ComponentActivity中是怎么处理的:

java 复制代码
public class ComponentActivity extends androidx.core.app.ComponentActivity implements LifecycleOwner{

    private final LifecycleRegistry mLifecycleRegistry = new LifecycleRegistry(this);

    @Override
    protected void onCreate(@Nullable Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        ...
        //使用ReportFragment监听Activity的生命周期状态
        ReportFragment.injectIfNeededIn(this); 
        ...
    }
    
    @CallSuper
    @Override
    protected void onSaveInstanceState(@NonNull Bundle outState) {
        mLifecycleRegistry.markState(Lifecycle.State.CREATED);
        super.onSaveInstanceState(outState);
    }

    @NonNull
    @Override
    public Lifecycle getLifecycle() {
        return mLifecycleRegistry;
    }
}

乍一看,并没有在ComponentActivity的生命周期方法中找到对应的代码,实际监听生命周期的处理在 ReportFragment的injectIfNeededIn()方法里中:

java 复制代码
public class ReportFragment extends android.app.Fragment {

    public static void injectIfNeededIn(Activity activity) {
        if (Build.VERSION.SDK_INT >= 29) {
            //API 29+,直接使用LifecycleCallbacks监听生命周期
            LifecycleCallbacks.registerIn(activity);
        }

        //API 29之前,添加ReportFragment监听生命周期
        android.app.FragmentManager manager = activity.getFragmentManager();
        if (manager.findFragmentByTag(REPORT_FRAGMENT_TAG) == null) {
            manager.beginTransaction().add(new ReportFragment(), REPORT_FRAGMENT_TAG).commit();
            // Hopefully, we are the first to make a transaction.
            manager.executePendingTransactions();
        }
    }

    @Override
    public void onActivityCreated(Bundle savedInstanceState) {
        super.onActivityCreated(savedInstanceState);
        dispatch(Lifecycle.Event.ON_CREATE);
    }

    @Override
    public void onStart() {
        super.onStart();
        dispatch(Lifecycle.Event.ON_START);
    }

    @Override
    public void onResume() {
        super.onResume();
        dispatch(Lifecycle.Event.ON_RESUME);
    }

    @Override
    public void onPause() {
        super.onPause();
        dispatch(Lifecycle.Event.ON_PAUSE);
    }

    @Override
    public void onStop() {
        super.onStop();
        dispatch(Lifecycle.Event.ON_STOP);
    }

    @Override
    public void onDestroy() {
        super.onDestroy();
        dispatch(Lifecycle.Event.ON_DESTROY);
    }

    private void dispatch(@NonNull Lifecycle.Event event) {
        if (Build.VERSION.SDK_INT < 29) {
            // API 29之前才需要这样分发
            dispatch(getActivity(), event);
        }
    }

    static void dispatch(@NonNull Activity activity, @NonNull Lifecycle.Event event) {
        if (activity instanceof LifecycleRegistryOwner) { 
            ((LifecycleRegistryOwner) activity).getLifecycle().handleLifecycleEvent(event);
            return;
        }

        //走这里
        if (activity instanceof LifecycleOwner) {
            Lifecycle lifecycle = ((LifecycleOwner) activity).getLifecycle();
            if (lifecycle instanceof LifecycleRegistry) {
                ((LifecycleRegistry) lifecycle).handleLifecycleEvent(event);
            }
        }
    }

    //在API 29及以上,使用的生命周期回调
    static class LifecycleCallbacks implements Application.ActivityLifecycleCallbacks {

        static void registerIn(Activity activity) {
            activity.registerActivityLifecycleCallbacks(new LifecycleCallbacks());
        }

        @Override
        public void onActivityPostCreated(@NonNull Activity activity,
                @Nullable Bundle savedInstanceState) {
            dispatch(activity, Lifecycle.Event.ON_CREATE);
        }

        @Override
        public void onActivityPostStarted(@NonNull Activity activity) {
            dispatch(activity, Lifecycle.Event.ON_START);
        }

        @Override
        public void onActivityPostResumed(@NonNull Activity activity) {
            dispatch(activity, Lifecycle.Event.ON_RESUME);
        }

        @Override
        public void onActivityPrePaused(@NonNull Activity activity) {
            dispatch(activity, Lifecycle.Event.ON_PAUSE);
        }

        @Override
        public void onActivityPreStopped(@NonNull Activity activity) {
            dispatch(activity, Lifecycle.Event.ON_STOP);
        }

        @Override
        public void onActivityPreDestroyed(@NonNull Activity activity) {
            dispatch(activity, Lifecycle.Event.ON_DESTROY);
        }
    }
}

在API 29及以上,使用LifecycleCallbacks来监听Activity的生命周期,由于dispatch(activity, Lifecycle.Event.ON_RESUME)在onActivityPostResumed()方法中调用,而dispatch(activity, Lifecycle.Event.ON_PAUSE)onActivityPrePaused()方法中调用,这就是前面的打印为什么一个在onResume()之后,一个在onPause()之前的原因。

一般我们会通过重写onCreateView()方法来给Fragment添加布局,注意这里ReportFragment中没有重写这个方法,所以ReportFragment是没有布局的透明Fragment。ReportFragment的作用就是获取生命周期而已,因为fragment生命周期是依附于Activity的。好处就是把这部分逻辑抽离出来,实现activity的无侵入。如果你对Glide比较熟,就会知道它也是使用透明Fragment获取生命周期的。

上面的代码中无论是使用LifecycleCallbacks还是使用ReportFragment最后都会在对应的生命周期方法中执行对应的dispatch(@NonNull Activity activity, @NonNull Lifecycle.Event event)方法,最后使用LifecycleRegistryhandleLifecycleEvent(event)方法来对对应的事件进行处理。这样就把生命周期事件的处理转移到了LifecycleRegistry中:

java 复制代码
public class LifecycleRegistry extends Lifecycle {

    //LifecycleObserver当前状态
    private State mState;
    
    //LifecycleOwner的弱引用
    private final WeakReference<LifecycleOwner> mLifecycleOwner;

    public LifecycleRegistry(@NonNull LifecycleOwner provider) {
        this(provider, true);
    }

    private LifecycleRegistry(@NonNull LifecycleOwner provider, boolean enforceMainThread) {
        mLifecycleOwner = new WeakReference<>(provider);
        //默认初始化为INITIALIZED
        mState = INITIALIZED;
        mEnforceMainThread = enforceMainThread;
    }

    public void handleLifecycleEvent(@NonNull Lifecycle.Event event) {
        State next = getStateAfter(event);//获取event发生之后的将要处于的状态
        moveToState(next);//移动到这个状态
    }

    private void moveToState(State next) {
        if (mState == next) {
            return;
        }
        //更新状态
        mState = next;
        //正在sync()或正在addObserver()
        if (mHandlingEvent || mAddingObserverCounter != 0) {
            mNewEventOccurred = true;
            // we will figure out what to do on upper level.
            return;
        }
        mHandlingEvent = true;
        sync();
        mHandlingEvent = false;
    }

    //对应于官网那张图
    static State getStateAfter(Event event) {
        switch (event) {
            case ON_CREATE:
            case ON_STOP:
                return CREATED;
            case ON_START:
            case ON_PAUSE:
                return STARTED;
            case ON_RESUME:
                return RESUMED;
            case ON_DESTROY:
                return DESTROYED;
            case ON_ANY:
                break;
        }
        throw new IllegalArgumentException("Unexpected event value " + event);
    }

}

在moveToState()方法中将当前状态mState与下一个状态next比较,如果相等,直接return;如果不相等,进行sync()同步:

java 复制代码
public class LifecycleRegistry extends Lifecycle {

    //存储observers,遍历时可以删除或添加
    //后添加的observer的state<=先添加的observer的state
    private FastSafeIterableMap<LifecycleObserver, ObserverWithState> mObserverMap  
        = new FastSafeIterableMap<>();
         

    // happens only on the top of stack (never in reentrance),
    // so it doesn't have to take in account parents
    private void sync() {
        LifecycleOwner lifecycleOwner = mLifecycleOwner.get();
        //LifecycleOwner已经被回收了
        if (lifecycleOwner == null) {
            throw new IllegalStateException("LifecycleOwner of this LifecycleRegistry is already"
                    + "garbage collected. It is too late to change lifecycle state.");
        }
        
        while (!isSynced()) { //isSynced()表示所有观察者都同步完了
            mNewEventOccurred = false;
            
            //mObserverMap中存储的是观察者,状态按照从大到小排列,mState比最小的还小
            if (mState.compareTo(mObserverMap.eldest().getValue().mState) < 0) {
                backwardPass(lifecycleOwner);
            }
            Entry<LifecycleObserver, ObserverWithState> newest = mObserverMap.newest();
            //mState比最大的还大
            if (!mNewEventOccurred && newest != null
                    && mState.compareTo(newest.getValue().mState) > 0) {
                forwardPass(lifecycleOwner);
            }
        }
        mNewEventOccurred = false;
    }


    private boolean isSynced() {
        if (mObserverMap.size() == 0) {
            return true;
        }
        //mObserverMap中最早添加的观察者的状态
        State eldestObserverState = mObserverMap.eldest().getValue().mState;
        //mObserverMap中最新添加的观察者的状态
        State newestObserverState = mObserverMap.newest().getValue().mState;
        return eldestObserverState == newestObserverState && mState == newestObserverState;
    }

}

这里出现了mObserverMap,mObserverMap是FastSafeIterableMap类型的,其实是把数据存储在其内部的成员mHashMap中,代码如下:

typescript 复制代码
//简陋版的LinkedHashMap,支持遍历时的元素修改,比SafeIterableMap占用的内存多,非线程安全
public class FastSafeIterableMap<K, V> extends SafeIterableMap<K, V> {

    private HashMap<K, Entry<K, V>> mHashMap = new HashMap<>();

    @Override
    protected Entry<K, V> get(K k) {
        return mHashMap.get(k);
    }

    @Override
    public V putIfAbsent(@NonNull K key, @NonNull V v) {
        //从mHashMap中获取key对应的current(current类型是Entry<K,V>),
        //如果存在,返回current.mValue;
        Entry<K, V> current = get(key);
        if (current != null) {
            return current.mValue;
        }
        //如果不存在,存入mHashMap
        mHashMap.put(key, put(key, v));
        return null;
    }

    @Override
    public V remove(@NonNull K key) {
        V removed = super.remove(key);
        mHashMap.remove(key);
        return removed;
    }

    
    public boolean contains(K key) {
        return mHashMap.containsKey(key);
    }

    //获取mHashMap中k对应的节点在链表中的上一个节点
    public Map.Entry<K, V> ceil(K k) {
        if (contains(k)) {
            return mHashMap.get(k).mPrevious;
        }
        return null;
    }
}

FastSafeIterableMap的eldest()、newest()方法来自父类SafeIterableMap,下面来看看SafeIterableMap:

typescript 复制代码
//看起来是map,实际是LinkedList,支持遍历时修改元素,非线程安全
public class SafeIterableMap<K, V> implements Iterable<Map.Entry<K, V>> {

    //最早添加的entry
    Entry<K, V> mStart;
    //最新添加的entry
    private Entry<K, V> mEnd;
    
    private int mSize = 0;

    //返回最早添加的entry或null
    public Map.Entry<K, V> eldest() {
        return mStart;
    }

    //返回最新添加的entry或null
    public Map.Entry<K, V> newest() {
        return mEnd;
    }

    static class Entry<K, V> implements Map.Entry<K, V> {
        @NonNull
        final K mKey;
        @NonNull
        final V mValue;
        //下一个节点
        Entry<K, V> mNext;
        //上一个节点
        Entry<K, V> mPrevious;

    }
}

分析发现SafeIterableMap实际上是一个Entry<K, V>组成的双链表,FastSafeIterableMap是对SafeIterableMap的进一步封装,在Entry<K, V>的基础上添加了K,存储在HashMap<K, Entry<K, V>>中,这样方便快速通过key获取value,就不需要通过链表一个个遍历了。

mObserverMap是用来存储观察者的,mObserverMap添加观察者的地方就在getLifecycle().addObserver()中,代码如下:

java 复制代码
public class LifecycleRegistry extends Lifecycle {

 	 @Override
    public void addObserver(@NonNull LifecycleObserver observer) {
        //检查是否是主线程
        enforceMainThreadIfNeeded("addObserver");
        //初始状态
        State initialState = mState == DESTROYED ? DESTROYED : INITIALIZED;
        //将observer与initialState一起封装到ObserverWithState中,ObserverWithState是一个内部类
        ObserverWithState statefulObserver = new ObserverWithState(observer, initialState);
        //observer作为key,ObserverWithState作为value,存到mObserverMap
        ObserverWithState previous = mObserverMap.putIfAbsent(observer, statefulObserver);

        if (previous != null) {
            return;//已经添加过,直接返回
        }
        LifecycleOwner lifecycleOwner = mLifecycleOwner.get();
        if (lifecycleOwner == null) {
            // it is null we should be destroyed. Fallback quickly
            // lifecycleOwner被回收了,直接返回
            return;
        }

	      //isReentrance为true表示正在sync()或正在addObserver()
        boolean isReentrance = mAddingObserverCounter != 0 || mHandlingEvent;
        //获取目标状态
        State targetState = calculateTargetState(observer);
        mAddingObserverCounter++;
        //关注1,这里后面再分析
        while ((statefulObserver.mState.compareTo(targetState) < 0
                && mObserverMap.contains(observer))) {
            pushParentState(statefulObserver.mState);
            statefulObserver.dispatchEvent(lifecycleOwner, upEvent(statefulObserver.mState));
            popParentState();
            // mState / subling may have been changed recalculate
            targetState = calculateTargetState(observer);
        }

        if (!isReentrance) {
            // we do sync only on the top level.
            sync();
        }
        mAddingObserverCounter--;
    }

	static class ObserverWithState {
        State mState;
        LifecycleEventObserver mLifecycleObserver;

	      //构造函数
        ObserverWithState(LifecycleObserver observer, State initialState) {
            //初始化mLifecycleObserver
            mLifecycleObserver = Lifecycling.lifecycleEventObserver(observer);
            mState = initialState;
        }

        void dispatchEvent(LifecycleOwner owner, Event event) {
            State newState = getStateAfter(event);
            mState = min(mState, newState);  //mState的作用是:新的事件触发后遍历通知所有观察者时,判断是否已经通知这个观察者了,即防止重复通知。
            mLifecycleObserver.onStateChanged(owner, event);
            mState = newState;
        }
    }
}

用observer创建带状态的观察者ObserverWithState,observer作为key,ObserverWithState作为value,存入mObserverMap。

关注1我们后面再详细分析,这里的目的就是通过分发Event把当前添加的观察者的State一步一步同步到最新状态targetState。这就导致,比如你在Activity的onResume()方法中通过addObserver()添加观察者,但是onResume()之前的事件也会一一分发给观察者,即粘性。

回到最前面的sync()方法,mObserverMap.eldest().getValue()返回的是最早添加的到mObserverMap中的带状态的观察者ObserverWithState,mObserverMap.eldest().getValue().mState就是最早添加到mObserverMap中的观察者的状态。

这里为什么要使用while循环?

因为如果LifecycleOwner的当前状态为RESUMED,mObserverMap中观察者的状态为INITIALIZED,观察者的状态会从INITIALIZED->CREATED->STARTED->RESUMED一步一步转变,需要多次状态同步。

进入循环的条件是!isSynced(),若最早和最新添加的观察者的状态一致,且都是当前状态mState,说明已经同步完了。

没有同步完就进入循环体:

  • mState比最早添加的观察者状态小,走backwardPass()方法,从新到老分发,循环使用downEvent()和observer.dispatchEvent(),连续分发事件;
  • mState比最新添加的观察者状态大,走forwardPass()方法,从老到新分发,循环使用upEvent()和observer.dispatchEvent(),连续分发事件。
java 复制代码
public class LifecycleRegistry extends Lifecycle {

    private void forwardPass(LifecycleOwner lifecycleOwner) {
        //正序遍历链表,从老到新
        Iterator<Entry<LifecycleObserver, ObserverWithState>> ascendingIterator =
                mObserverMap.iteratorWithAdditions();
        while (ascendingIterator.hasNext() && !mNewEventOccurred) {
            Entry<LifecycleObserver, ObserverWithState> entry = ascendingIterator.next();
            ObserverWithState observer = entry.getValue();
            while ((observer.mState.compareTo(mState) < 0 && !mNewEventOccurred
                    && mObserverMap.contains(entry.getKey()))) {
                pushParentState(observer.mState);
                //观察者分发事件
                observer.dispatchEvent(lifecycleOwner, upEvent(observer.mState));
                popParentState();
            }
        }
    }

    private void backwardPass(LifecycleOwner lifecycleOwner) {
        //倒序遍历链表,从新到老
        Iterator<Entry<LifecycleObserver, ObserverWithState>> descendingIterator =
                mObserverMap.descendingIterator();
        while (descendingIterator.hasNext() && !mNewEventOccurred) {
            Entry<LifecycleObserver, ObserverWithState> entry = descendingIterator.next();
            ObserverWithState observer = entry.getValue();
            while ((observer.mState.compareTo(mState) > 0 && !mNewEventOccurred
                    && mObserverMap.contains(entry.getKey()))) {
                Event event = downEvent(observer.mState);
                pushParentState(getStateAfter(event));
                //观察者分发事件
                observer.dispatchEvent(lifecycleOwner, event);
                popParentState();
            }
        }
    }

    //回退
    private static Event downEvent(State state) {
        switch (state) {
            case INITIALIZED:
                throw new IllegalArgumentException();
            case CREATED:
                return ON_DESTROY;
            case STARTED:
                return ON_STOP;
            case RESUMED:
                return ON_PAUSE;
            case DESTROYED:
                throw new IllegalArgumentException();
        }
        throw new IllegalArgumentException("Unexpected state value " + state);
    }

    //前进
    private static Event upEvent(State state) {
        switch (state) {
            case INITIALIZED:
            case DESTROYED:
                return ON_CREATE;
            case CREATED:
                return ON_START;
            case STARTED:
                return ON_RESUME;
            case RESUMED:
                throw new IllegalArgumentException();
        }
        throw new IllegalArgumentException("Unexpected state value " + state);
    }
}

有没有发现上面代码12-15行与前面关注1处while循环里面的代码基本一致,也是同样的进行事件分发、状态同步。

observer.dispatchEvent()最终還是执行ObserverWithState的dispatchEvent()方法:

java 复制代码
static class ObserverWithState {
    State mState;
    LifecycleEventObserver mLifecycleObserver;

    //构造函数
    ObserverWithState(LifecycleObserver observer, State initialState) {
        //初始化mLifecycleObserver
        mLifecycleObserver = Lifecycling.lifecycleEventObserver(observer);
        mState = initialState;
    }

    void dispatchEvent(LifecycleOwner owner, Event event) {
        State newState = getStateAfter(event);
        //mState的作用是:新的事件触发后遍历通知所有观察者时,
        //判断是否已经通知这个观察者了,即防止重复通知。
        mState = min(mState, newState);  
        mLifecycleObserver.onStateChanged(owner, event);
        mState = newState;
    }
}

ObserverWithState的dispatchEvent()方法又调用了mLifecycleObserver的onStateChanged()方法,在ObserverWithState的构造方法中通过Lifecycling.lifecycleEventObserver(observer)初始化了mLifecycleObserver:

java 复制代码
public class Lifecycling {

    @NonNull
    static LifecycleEventObserver lifecycleEventObserver(Object object) {
        ...
        return new ReflectiveGenericLifecycleObserver(object);
    }
}

其中,ReflectiveGenericLifecycleObserver代码如下:

java 复制代码
class ReflectiveGenericLifecycleObserver implements LifecycleEventObserver {
    private final Object mWrapped;
    private final CallbackInfo mInfo;

    ReflectiveGenericLifecycleObserver(Object wrapped) {
        //mWrapped即为LifecycleObserver
        mWrapped = wrapped;
        //mInfo为LifecycleObserver对应的CallbackInfo
        mInfo = ClassesInfoCache.sInstance.getInfo(mWrapped.getClass());
    }

    @Override
    public void onStateChanged(LifecycleOwner source, Event event) {
        mInfo.invokeCallbacks(source, event, mWrapped);
    }
}

mLifecycleObserver的onStateChanged()方法又会调用mInfo.invokeCallbacks(source, event, mWrapped),其中mWrapped是我们添加的LifecycleObserver,而mInfo来自ClassesInfoCache:

ini 复制代码
final class ClassesInfoCache {
    //单例
    static ClassesInfoCache sInstance = new ClassesInfoCache();
    
    //使用mCallbackMap缓存观察者类对应的CallbackInfo
    private final Map<Class<?>, CallbackInfo> mCallbackMap = new HashMap<>();

    CallbackInfo getInfo(Class<?> klass) {
        CallbackInfo existing = mCallbackMap.get(klass);
        //如果存在,直接返回
        if (existing != null) {
            return existing;
        }
        //如果不存在,创建
        existing = createInfo(klass, null);
        return existing;
    }

    private CallbackInfo createInfo(Class<?> klass, @Nullable Method[] declaredMethods) {
        Class<?> superclass = klass.getSuperclass();
        //方法对应的Lifecycle.Event
        Map<MethodReference, Lifecycle.Event> handlerToEvent = new HashMap<>();
        if (superclass != null) {
            CallbackInfo superInfo = getInfo(superclass);
            if (superInfo != null) {
                handlerToEvent.putAll(superInfo.mHandlerToEvent);
            }
        }

        Class<?>[] interfaces = klass.getInterfaces();
        for (Class<?> intrfc : interfaces) {
            for (Map.Entry<MethodReference, Lifecycle.Event> entry : getInfo(
                    intrfc).mHandlerToEvent.entrySet()) {
                verifyAndPutHandler(handlerToEvent, entry.getKey(), entry.getValue(), klass);
            }
        }

        Method[] methods = declaredMethods != null ? declaredMethods : getDeclaredMethods(klass);
        boolean hasLifecycleMethods = false;
        //遍历实现了mLifecycleObserver接口的类中的方法
        for (Method method : methods) {
            //获取有@OnLifecycleEvent注解的方法
            OnLifecycleEvent annotation = method.getAnnotation(OnLifecycleEvent.class);
            if (annotation == null) {
                continue;
            }
            hasLifecycleMethods = true;
            Class<?>[] params = method.getParameterTypes();//获取方法参数
            int callType = CALL_TYPE_NO_ARG;
            //如果有参数
            if (params.length > 0) {
                callType = CALL_TYPE_PROVIDER;
                //第1个参数必须是LifecycleOwner
                if (!params[0].isAssignableFrom(LifecycleOwner.class)) {
                    throw new IllegalArgumentException(
                            "invalid parameter type. Must be one and instanceof LifecycleOwner");
                }
            }
            Lifecycle.Event event = annotation.value();
            //如果有2个参数
            if (params.length > 1) {
                callType = CALL_TYPE_PROVIDER_WITH_EVENT;
                //第2个参数必须是Lifecycle.Event
                if (!params[1].isAssignableFrom(Lifecycle.Event.class)) {
                    throw new IllegalArgumentException(
                            "invalid parameter type. second arg must be an event");
                }
                //有2个参数,注解值只能是ON_ANY
                if (event != Lifecycle.Event.ON_ANY) {
                    throw new IllegalArgumentException(
                            "Second arg is supported only for ON_ANY value");
                }
            }
            //如果参数超过2个
            if (params.length > 2) {
                throw new IllegalArgumentException("cannot have more than 2 params");
            }
            MethodReference methodReference = new MethodReference(callType, method);
            //将methodReference对应的event存入handlerToEvent
            verifyAndPutHandler(handlerToEvent, methodReference, event, klass);
        }
        CallbackInfo info = new CallbackInfo(handlerToEvent);
        //将观察者类对应的CallbackInfo存入mCallbackMap中
        mCallbackMap.put(klass, info);   
        mHasLifecycleMethods.put(klass, hasLifecycleMethods);
        return info;
    }

    static class CallbackInfo {
        //Lifecycle.Event对应的方法
        final Map<Lifecycle.Event, List<MethodReference>> mEventToHandlers;
        //方法对应的Lifecycle.Event
        final Map<MethodReference, Lifecycle.Event> mHandlerToEvent;

        CallbackInfo(Map<MethodReference, Lifecycle.Event> handlerToEvent) {
            mHandlerToEvent = handlerToEvent;
            mEventToHandlers = new HashMap<>();
            //遍历handlerToEvent,将Lifecycle.Event对应的方法存入mEventToHandlers
            for (Map.Entry<MethodReference, Lifecycle.Event> entry : handlerToEvent.entrySet()) {
                Lifecycle.Event event = entry.getValue();
                List<MethodReference> methodReferences = mEventToHandlers.get(event);
                if (methodReferences == null) {
                    methodReferences = new ArrayList<>();
                    mEventToHandlers.put(event, methodReferences);
                }
                methodReferences.add(entry.getKey());
            }
        }
    }    
}

因为反射是比较昂贵的,上面使用了ClassesInfoCache类来缓存实现了LifecycleObserver接口的类以及其中的Lifecycle.Event和对应的方法,主要使用了3个HashMap:

  1. mCallbackMap:缓存观察者类对应的CallbackInfo。
  2. mEventToHandlers:CallbackInfo的成员变量,缓存Lifecycle.Event对应的方法。
  3. mHandlerToEvent:CallbackInfo的成员变量,缓存方法对应的Lifecycle.Event。

接着回到ReflectiveGenericLifecycleObserver的onStateChanged()方法,onStateChanged()方法会调用CallbackInfo的invokeCallbacks()方法:

java 复制代码
final class ClassesInfoCache {

    static class CallbackInfo {

        void invokeCallbacks(LifecycleOwner source, Lifecycle.Event event, Object target) {
            invokeMethodsForEvent(mEventToHandlers.get(event), source, event, target);
            invokeMethodsForEvent(mEventToHandlers.get(Lifecycle.Event.ON_ANY), source, event,
                    target);
        }

        private static void invokeMethodsForEvent(List<MethodReference> handlers,
                LifecycleOwner source, Lifecycle.Event event, Object mWrapped) {
            if (handlers != null) {
                //遍历Lifecycle.Event对应的MethodReference
                for (int i = handlers.size() - 1; i >= 0; i--) {
                    //执行MethodReference的invokeCallback()方法
                    handlers.get(i).invokeCallback(source, event, mWrapped);
                }
            }
        }
    }
}

最终通过遍历该event对应的List<MethodReference>,然后一个个执行MethodReference的invokeCallback()方法:

arduino 复制代码
final class ClassesInfoCache {

    static final class MethodReference {
        final int mCallType;
        final Method mMethod;

        void invokeCallback(LifecycleOwner source, Lifecycle.Event event, Object target) {     
            switch (mCallType) {
                case CALL_TYPE_NO_ARG:
                    mMethod.invoke(target);//没有参数的
                    break;
                case CALL_TYPE_PROVIDER:
                    mMethod.invoke(target, source);//一个参数的:LifecycleOwner
                    break;
                case CALL_TYPE_PROVIDER_WITH_EVENT:
                    mMethod.invoke(target, source, event);//两个参数的:LifecycleOwner,Event
                    break;
            }  
        }
    }
}

上面就是分发相应的事件,就会调用观察者中对应的方法的流程。

前面的calculateTargetState()方法再解释一下:

java 复制代码
 // we have to keep it for cases:
 // void onStart() {
 //     mRegistry.removeObserver(this);
 //     mRegistry.add(newObserver);
 // }
 // newObserver should be brought only to CREATED state during the execution of
 // this onStart method. our invariant with mObserverMap doesn't help, because parent observer
 // is no longer in the map.
private ArrayList<State> mParentStates = new ArrayList<>();

private State calculateTargetState(LifecycleObserver observer) {
   Entry<LifecycleObserver, ObserverWithState> previous = mObserverMap.ceil(observer);

   State siblingState = previous != null ? previous.getValue().mState : null;
   State parentState = !mParentStates.isEmpty() ? mParentStates.get(mParentStates.size() - 1)
           : null;
   return min(min(mState, siblingState), parentState);
}

previous是新观察者的前一个entry,即原先的队尾,新观察者此时变成队尾。获取目标状态,previous即为当前状态的最小值。

假如没有mParentStates,好像还正常,然后注释给了一个反例:

  • Observer1 在 onStart() 回调中把自己从集合中移除,然后添加了新的Observer2;
  • 假如集合中只有Observer1这个观察者,移除后集合就是空的,会导致Observer2直接更新到LifecycleRegister的STARTED状态;
  • 但,此时Observer1的 onStart() 回调还未执行完,而 Observer2 的 ON_START就回调执行完了,显然就违背了LifecycleRegistry的设计------观察者的同步是按照顺序执行的(这里没懂);

添加了这个属性,在执行观察者回调前 pushParentState() 暂存当前观察者,回调完后 popParentState() 移除观察者,然后执行 calculateTargetState() 时判断是否为空,不为空取出最后一个缓存的观察者,然后取:LifecycleRegister当前状态、previous当前状态、缓存观察者状态中的最小值,作为当前观察者的状态。

感谢与参考

"终于懂了"系列:Jetpack AAC完整解析(一)Lifecycle 完全掌握!

Lifecycle官方文档

相关推荐
_一条咸鱼_11 小时前
Android Runtime性能计数器实现深度剖析(95)
android·android jetpack
搬砖不得颈椎病1 天前
Compose 中的 Side-effects
android·android jetpack
_一条咸鱼_1 天前
Android Runtime死代码消除原理深度剖析(93)
android·面试·android jetpack
equationl2 天前
安卓开发中使用 kotlin Object 和 lazy 关键字以及 Room 踩坑记录
前端·数据库·android jetpack
刘龙超3 天前
如何应对 Android 面试官 -> 玩转 Jetpack Paging
android jetpack
_一条咸鱼_3 天前
Android Runtime常量折叠与传播源码级深入解析(92)
android·面试·android jetpack
alexhilton4 天前
揭密Jetpack Compose中的PausableComposition
android·kotlin·android jetpack
FunnySaltyFish4 天前
深入理解 @ReadOnlyComposable、@NonRestartableComposable 和 @NonSkippableComposable
android·android jetpack
_一条咸鱼_4 天前
Android Runtime敏感数据加密存储源码级解析(89)
android·面试·android jetpack
_一条咸鱼_4 天前
Android Runtime编译优化深度解析(90)
android·面试·android jetpack