【FPGA/verilog -入门学习17】vivado 实现串口自发自收程序

1,需求

PC使用串口助手给FPGA板发送9600 波特率的数据,FPGA板接收到数据后,回复同样的数据给PC

2,需求分析

按模块可以划分为:

rx接收模块,将输入的8位并行rx 数据转换成[7:0]rx_data 信号,当数据接收完成后,同时生成一个rx_done 信号。

bsp_generate_clk_en:接收波特率时钟产生模块,当rx接收到数据时,给一个start信号给波特率时钟产生模块,由bsp时钟产生模块按9600波特率产生时钟使能信号bsp_generate_clk_en 用于同步rx 接收模块接收数据的时序。

tx发送模块:当接收到来子rx 接收模块发过来的rx_done 信号后,将[7:0]rx_data 的数据按波特率时钟产生模块的顺序依次发送出去。

bsp_generate_clk_en:发送波特率时钟产生模块,功能同接收模块

3,绘制框图和时序图

4,编写发送tx 模块,并编写行为测试模块代码测试其功能

`timescale 1ns/1ps

module testbench_top();
    

//参数定义

`define CLK_PERIORD        20        //时钟周期设置为20ns(50MHz)    


//接口申明
reg i_clk;
reg i_rest_n;
 
wire o_uart_tx;
wire o_uart_tx_done;


   

 vlg_design vlg_design_inst(
    .i_clk(i_clk),
    .i_rest_n(i_rest_n),
    .o_uart_tx(o_uart_tx),
    .o_uart_tx_done(o_uart_tx_done)
  
 );
 
initial begin
 
i_clk <= 0;
i_rest_n <= 0;
#20;
i_rest_n <= 1;


#2_000_000_000;
$stop;
 
end

always #(`CLK_PERIORD/2) i_clk = ~i_clk;
 
endmodule

//my_uart_tx
//put o_rx_data to i_uart_tx
  
`timescale 1ns/1ps
module vlg_1ms(
    input i_clk,  //25Mhz
    input i_rest_n,
    output [7:0]o_data, 
    output reg tx_en
    );

localparam CNT_1MS_MAX = 25*2000 - 1;

wire clk_25m;
wire clk_12r5m;
wire clk_100m;
wire locked;
 
clk_wiz_0 instance_name
(
    // Clock out ports
    .clk_out1(clk_25m),     // output clk_out1
    .clk_out2(clk_12r5m),     // output clk_out2
    .clk_out3(clk_100m),     // output clk_out3
    // Status and control signals
    .reset(!i_rest_n), // input reset
    .locked(locked),       // output locked
    // Clock in ports
    .clk_in1(i_clk) // input clk_in1
);      

// 每隔1ms 产生一个 tx_en 上升沿脉冲  
reg [15:0] r_cnt_1ms;    
always @(posedge i_clk) begin
    if(!i_rest_n) r_cnt_1ms <= 0;
    else if(r_cnt_1ms < CNT_1MS_MAX)  r_cnt_1ms <= r_cnt_1ms + 1;
    else r_cnt_1ms <= 0;
end    
    
always @(posedge i_clk) begin
    if(!i_rest_n) tx_en <= 0;
    else if(r_cnt_1ms == CNT_1MS_MAX)  tx_en <= 1;
    else tx_en <= 0;
end    
reg [7:0]r_data;
// 每隔1ms ,data = 0000_0001 自增 
always @(posedge i_clk) begin
    if(!i_rest_n)  r_data <= 0;
    else if(r_data == 100) r_data <= 0;
    else if(r_cnt_1ms == CNT_1MS_MAX) r_data <= r_data+1;
    else ;
    end

assign o_data = r_data;




endmodule

//my_uart_tx
//put o_rx_data to i_uart_tx
  
`timescale 1ns/1ps
module vlg_design(
    input i_clk,  //25Mhz
    input i_rest_n,
    output  o_uart_tx,    
    output  o_uart_tx_done 
    );


wire clk_25m;
wire clk_12r5m;
wire clk_100m;
wire locked;
 
wire tx_bps_start;
wire o_bps_clk_en;

wire [7:0]w_data;
wire w_tx_en;

  clk_wiz_0 instance_name
   (
    // Clock out ports
    .clk_out1(clk_25m),     // output clk_out1
    .clk_out2(clk_12r5m),     // output clk_out2
    .clk_out3(clk_100m),     // output clk_out3
    // Status and control signals
    .reset(!i_rest_n), // input reset
    .locked(locked),       // output locked
   // Clock in ports
    .clk_in1(i_clk));      // input clk_in1


    
//对被测试的设计进行例化
    
vlg_speed_generate        vlg_speed_generate_inst(
    .i_clk(clk_25m),
    .i_rest_n(i_rest_n),
    .i_bps_start(tx_bps_start),
    .o_bps_clk_en(o_bps_clk_en) 
    );    
    
    
///

 vlg_my_uart_tx vlg_my_uart_tx_inst(
    .i_clk(clk_25m),
    .i_rest_n(i_rest_n),
    .i_uart_tx_bps_en(o_bps_clk_en),
    .i_rx_data(w_data),
    .tx_en(w_tx_en),
    .tx_bps_start(tx_bps_start),
    .o_uart_tx(o_uart_tx),
    .o_uart_tx_done(o_uart_tx_done)
  
 );
 ///

 vlg_1ms vlg_1ms_inst(
    .i_clk(clk_25m),
    .i_rest_n(i_rest_n),
    .o_data(w_data),
    .tx_en(w_tx_en)
 );
 endmodule

//my_uart_tx
//put o_rx_data to i_uart_tx
  
`timescale 1ns/1ps
module vlg_my_uart_tx(
    input i_clk,  //25Mhz
    input i_rest_n,
    input i_uart_tx_bps_en, 
    input [7:0]i_rx_data, 
    input tx_en,
    output reg tx_bps_start,
    output reg o_uart_tx,    
    output reg o_uart_tx_done
    );
    
reg [3:0]txdata_cnt;    
    

//检测tx_en 的高电平脉冲
//检测到高脉冲 tx_bps_start 置1
//当数据发送完成,即start,D0~D7,Stop .txdata_cnt = 10 时结束tx_bps_start 置0


reg [1:0]r_tx_en_plus;
wire w_tx_en_pos;


always @(posedge i_clk) begin
    if(!i_rest_n) r_tx_en_plus <= 2'b00;
    else r_tx_en_plus <= {r_tx_en_plus[0],tx_en};
end

assign w_tx_en_pos = r_tx_en_plus[0]& ~r_tx_en_plus[1];


//产生 tx_bps_start
always @(posedge i_clk) begin
if(!i_rest_n) tx_bps_start <= 0;
else if(txdata_cnt == 11) tx_bps_start <= 0;
else if(w_tx_en_pos) tx_bps_start <= 1;
end


//txdata_cnt 计数 0~10 
always @(posedge i_clk) begin
if(!i_rest_n) txdata_cnt <= 0;
else if(txdata_cnt == 11)  txdata_cnt <= 0;
else if(i_uart_tx_bps_en) txdata_cnt <= txdata_cnt + 1;
end

//发出o_uart_tx
wire [9:0]w_data_10 = {1'b1,i_rx_data,1'b0}; // 1,d7,d6,d5,d4,d3,d2,d1,d0,0
always @(posedge i_clk) begin
    if(!i_rest_n) o_uart_tx <= 1;
    else if(i_uart_tx_bps_en)  begin 
            case (txdata_cnt)
                0: o_uart_tx <= w_data_10[0];
                1: o_uart_tx <= w_data_10[1];
                2: o_uart_tx <= w_data_10[2];
                3: o_uart_tx <= w_data_10[3];
                4: o_uart_tx <= w_data_10[4];
                5: o_uart_tx <= w_data_10[5];
                6: o_uart_tx <= w_data_10[6];
                7: o_uart_tx <= w_data_10[7];
                8: o_uart_tx <= w_data_10[8];
                9: o_uart_tx <= w_data_10[9];
                10: o_uart_tx <= 1;
                default : o_uart_tx <= 1;
            endcase 
        end
end

//o_uart_tx_done
always @(posedge i_clk) begin
if(!i_rest_n) o_uart_tx_done <= 0;
else if(txdata_cnt == 11)  o_uart_tx_done <= 1;
else  o_uart_tx_done <= 0;
end



endmodule

 
`timescale 1ns/1ps
module vlg_speed_generate(
    input i_clk,  //input 25Mhz
    input i_rest_n,
    input i_bps_start,
    output reg o_bps_clk_en
    );

localparam bpsrate = 115200;
localparam BPS_COUNT_MAX = 1*25*1000_000/bpsrate - 1;
localparam BPS_COUNT_MAX_DIV_2 = 1*25*1000_000/bpsrate/2-1;


reg [11:0]bsp_cnt;
 
always @(posedge i_clk) begin
if(!i_rest_n) bsp_cnt <= 0;
else if(!i_bps_start) bsp_cnt <= 0;
else if(bsp_cnt < BPS_COUNT_MAX)  bsp_cnt <= bsp_cnt+1;
    else bsp_cnt <= 0;
end
 
 
always @(posedge i_clk) begin
    if(!i_rest_n) o_bps_clk_en <= 0;
    else if (bsp_cnt == BPS_COUNT_MAX_DIV_2)  o_bps_clk_en <= 1;
    else o_bps_clk_en <= 0;
end

endmodule

仿真波形

5,编写RX接收模块,并编写行为测试模块代码测试其功能

`timescale 1ns/1ps

module testbench_top();
    

//参数定义

`define CLK_PERIORD        20        //时钟周期设置为20ns(50MHz)    


//接口申明
reg [7:0]data;
reg i_clk;
reg i_rest_n;
reg i_rx;

 
wire o_uart_tx;
wire o_uart_tx_done;

wire i_uart_rx_bps_en;
wire [7:0]o_rx_data;
wire o_rx_start;
wire o_uart_rx_done;

wire locked;

  clk_wiz_0 instance_name
   (
    // Clock out ports
    .clk_out1(clk_25m),     // output clk_out1
    .clk_out2(clk_12r5m),     // output clk_out2
    .clk_out3(clk_100m),     // output clk_out3
    // Status and control signals
    .reset(!i_rest_n), // input reset
    .locked(locked),       // output locked
   // Clock in ports
    .clk_in1(i_clk));      // input clk_in1
    
 
 
vlg_my_uart_rx vlg_my_uart_rx_inst(

    .i_clk(clk_25m),
    .i_rest_n(i_rest_n),
    .i_rx(i_rx),
    .i_uart_rx_bps_en(i_uart_rx_bps_en),
    .o_rx_data(o_rx_data),
    .o_rx_start(o_rx_start),
    .o_uart_rx_done(o_uart_rx_done)

); 
 


 
 vlg_speed_generate        vlg_speed_generate_inst(
    .i_clk(clk_25m),
    .i_rest_n(i_rest_n),
    .i_bps_start(o_rx_start),
    .o_bps_clk_en(i_uart_rx_bps_en) 
    );    
    
integer i;


 
initial begin
 
i_rx <= 1;
i_clk <= 0;
i_rest_n <= 0;
#20;
i_rest_n <= 1;
data <= 8'b0101_0101;  

end

always #(`CLK_PERIORD/2) i_clk = ~i_clk;


initial begin

 
@(posedge i_clk);
@(posedge i_rest_n);
#2000_000;
i_rx <= 0;
#10_4166;  //等待1个时钟 1_000_000_000 / 9600

for(i = 0;i<8;i=i+1) begin 
    i_rx <= data[i];
    #10_4166;
end
i_rx <= 1;
#10_4166;
#2000_000;


data <= 8'b0000_0101;  
i_rx <= 0;
#10_4166;  //等待1个时钟 1_000_000_000 / 9600

for(i = 0;i<8;i=i+1) begin 
    i_rx <= data[i];
    #10_4166;
end
i_rx <= 1;
#10_4166;
#2000_000;


data <= 8'b1111_0000;  
i_rx <= 0;
#10_4166;  //等待1个时钟 1_000_000_000 / 9600

for(i = 0;i<8;i=i+1) begin 
    i_rx <= data[i];
    #10_4166;
end
i_rx <= 1;
#10_4166;
#2000_000;


data <= 8'b0000_1111;  
i_rx <= 0;
#10_4166;  //等待1个时钟 1_000_000_000 / 9600

for(i = 0;i<8;i=i+1) begin 
    i_rx <= data[i];
    #10_4166;
end
i_rx <= 1;
#10_4166;
#2000_000;

$stop;

end


endmodule

//my_uart_tx
//put rx_data to i_uart_tx

`timescale 1ns/1ps
module vlg_design(
    input i_clk,  //25Mhz
    input i_rest_n,
    input i_rx,
    output o_tx
);

wire o_uart_tx;
wire o_uart_tx_done;
wire i_uart_rx_bps_en;
(*mark_debug = "true"*)wire [7:0]o_rx_data;
wire o_rx_start;
(*mark_debug = "true"*)wire o_uart_rx_done;
wire locked;


wire clk_25m;
wire clk_12r5m;
wire clk_100m;
wire locked;
 
wire tx_bps_start;
wire i_uart_tx_bps_en;


//灏唕x_data 杞垚 tx 
 ///

 vlg_my_uart_tx vlg_my_uart_tx_inst(
    .i_clk(clk_25m),
    .i_rest_n(i_rest_n),
    .i_uart_tx_bps_en(i_uart_tx_bps_en),
    .i_rx_data(o_rx_data),
    .tx_en(o_uart_rx_done),
    .tx_bps_start(tx_bps_start),
    .o_uart_tx(o_tx),
    .o_uart_tx_done(o_uart_tx_done)
  
 );

    
vlg_speed_generate        vlg_speed_generate_tx_inst(
    .i_clk(clk_25m),
    .i_rest_n(i_rest_n),
    .i_bps_start(tx_bps_start),
    .o_bps_clk_en(i_uart_tx_bps_en) 
    );    
    

//浜х敓rx 杞琩ata鏁版嵁
vlg_my_uart_rx vlg_my_uart_rx_inst(
    .i_clk(clk_25m),
    .i_rest_n(i_rest_n),
    .i_rx(i_rx),
    .i_uart_rx_bps_en(i_uart_rx_bps_en),
    .o_rx_data(o_rx_data),
    .o_rx_start(o_rx_start),
    .o_uart_rx_done(o_uart_rx_done)
); 
  
 vlg_speed_generate        vlg_speed_generate_rx_inst(
    .i_clk(clk_25m),
    .i_rest_n(i_rest_n),
    .i_bps_start(o_rx_start),
    .o_bps_clk_en(i_uart_rx_bps_en) 
    );    


// 浜х敓鏃堕挓淇″彿
  clk_wiz_0 instance_name
   (
    // Clock out ports
    .clk_out1(clk_25m),     // output clk_out1
    .clk_out2(clk_12r5m),     // output clk_out2
    .clk_out3(clk_100m),     // output clk_out3
    // Status and control signals
    .reset(!i_rest_n), // input reset
    .locked(locked),       // output locked
   // Clock in ports
    .clk_in1(i_clk));      // input clk_in1


endmodule

//my_uart_tx
//put o_rx_data to i_uart_tx
  
`timescale 1ns/1ps
module vlg_my_uart_rx(
    input i_clk,  //25Mhz
    input i_rest_n,
    input(*mark_debug = "true"*) i_rx,  //杈撳叆 
    input i_uart_rx_bps_en, 
    
    output  [7:0]o_rx_data, 
    output reg o_rx_start,
    output reg o_uart_rx_done
    );
    
reg [3:0]rxdata_cnt;    
wire w_rx_pos;
reg  r_rx_start_pos;
reg [1:0]rx_plus;

always @(posedge i_clk) begin
    if(!i_rest_n)  rx_plus <= 2'b00;
    else rx_plus <= {rx_plus[0],i_rx};
end    

assign w_rx_pos = ~rx_plus[0] & rx_plus[1];// 鎵?鏈塺x 涓嬮檷娌?

///
//浜х敓 r_rx_start_pos 鑴夊啿锛屽綋rx 绗竴娆? = 0鏃讹紝杈撳嚭楂樼數骞筹紝鍏朵粬鏃跺埢鎷変綆
always @(posedge i_clk) begin
    if(!i_rest_n) r_rx_start_pos <= 0;
    else if(rxdata_cnt == 0) r_rx_start_pos <= w_rx_pos;
    else r_rx_start_pos <= 0;

end    



//妫?娴嬪埌 rx 1涓剦鍐茬殑涓嬮檷娌匡紝琛ㄧず淇″彿寮?濮嬶紝鎶?鏈粨鏉燂紝瀹屾垚
//o_rx_start
always @(posedge i_clk) begin
    if(!i_rest_n) o_rx_start <= 0;
    else if(rxdata_cnt == 11)o_rx_start <= 0;
    else if(r_rx_start_pos) o_rx_start <= 1;
    else  ;
end

//浜х敓rxdata_cnt璁℃暟
always @(posedge i_clk) begin
    if(!i_rest_n) rxdata_cnt <= 0;
    else if (rxdata_cnt == 11) rxdata_cnt <= 0;
    else if(i_uart_rx_bps_en)rxdata_cnt <= rxdata_cnt + 1;
    else ;
end

reg [7:0]r_rx_data;    
//鏀堕泦鏁版嵁
always @(posedge i_clk) begin
    if(!i_rest_n) r_rx_data <= 8'b0000_0000;  
   
     else if(i_uart_rx_bps_en)   
        case (rxdata_cnt)
            4'd0:    ;//start
            4'd1:    r_rx_data[0] <= i_rx;
            4'd2:    r_rx_data[1] <= i_rx;
            4'd3:    r_rx_data[2] <= i_rx;
            4'd4:    r_rx_data[3] <= i_rx;
            4'd5:    r_rx_data[4] <= i_rx;
            4'd6:    r_rx_data[5] <= i_rx;
            4'd7:    r_rx_data[6] <= i_rx;
            4'd8:    r_rx_data[7] <= i_rx;
            4'd9:;//stop
            4'd10:;//none
            default:;//none
        endcase 
 end    

assign o_rx_data= (rxdata_cnt == 11)?r_rx_data:o_rx_data;

//浜х敓o_uart_rx_done
always @(posedge i_clk) begin
    if(!i_rest_n)  o_uart_rx_done <= 0;
    else if(rxdata_cnt == 11) o_uart_rx_done <= 1;
    else o_uart_rx_done <= 0;  
end
endmodule

6,配置IO端口,生成bit文件烧录到板子测试

7,问题1:2024年1月10日

发送单个数据没有问题,但是连发出现异常数据。

对比代码发现例程代码的发送数据,结束位并没有保持1个bsp的完整高电平,而是只保持了一个脉冲的电平

修改代码后,测试ok

//my_uart_tx
//put o_rx_data to i_uart_tx
  
`timescale 1ns/1ps
module vlg_my_uart_tx(
    input i_clk,  //25Mhz
    input i_rest_n,
    input i_uart_tx_bps_en, 
    input [7:0]i_rx_data, 
    input tx_en,
    output reg tx_bps_start,
    output reg o_uart_tx,    
    output reg o_uart_tx_done
    );
    
reg [3:0]txdata_cnt;    
    

//检测tx_en 的高电平脉冲
//检测到高脉冲 tx_bps_start 置1
//当数据发送完成,即start,D0~D7,Stop .txdata_cnt = 10 时结束tx_bps_start 置0


reg [1:0]r_tx_en_plus;
wire w_tx_en_pos;


always @(posedge i_clk) begin
    if(!i_rest_n) r_tx_en_plus <= 2'b00;
    else r_tx_en_plus <= {r_tx_en_plus[0],tx_en};
end

assign w_tx_en_pos = r_tx_en_plus[0]& ~r_tx_en_plus[1];


//产生 tx_bps_start
always @(posedge i_clk) begin
if(!i_rest_n) tx_bps_start <= 0;
else if(txdata_cnt == 10) tx_bps_start <= 0;
else if(w_tx_en_pos) tx_bps_start <= 1;
end


//txdata_cnt 计数 0~10 
always @(posedge i_clk) begin
if(!i_rest_n) txdata_cnt <= 0;
else if(txdata_cnt == 10)  txdata_cnt <= 0;
else if(i_uart_tx_bps_en) txdata_cnt <= txdata_cnt + 1;
end

//发出o_uart_tx
wire [9:0]w_data_10 = {1'b1,i_rx_data,1'b0}; // 1,d7,d6,d5,d4,d3,d2,d1,d0,0
always @(posedge i_clk) begin
    if(!i_rest_n) o_uart_tx <= 1;
    else if(i_uart_tx_bps_en)  begin 
            case (txdata_cnt)
                0: o_uart_tx <= w_data_10[0];
                1: o_uart_tx <= w_data_10[1];
                2: o_uart_tx <= w_data_10[2];
                3: o_uart_tx <= w_data_10[3];
                4: o_uart_tx <= w_data_10[4];
                5: o_uart_tx <= w_data_10[5];
                6: o_uart_tx <= w_data_10[6];
                7: o_uart_tx <= w_data_10[7];
                8: o_uart_tx <= w_data_10[8];
                9: o_uart_tx <= w_data_10[9];
                default : o_uart_tx <= 1;
            endcase 
        end
end

//o_uart_tx_done
always @(posedge i_clk) begin
    if(!i_rest_n) o_uart_tx_done <= 0;
    else if(txdata_cnt == 10)  o_uart_tx_done <= 1;
    else  o_uart_tx_done <= 0;
end
endmodule

8,问题2:{} 数据合并要加上前缀

wire [9:0]w_data_10 = {1,i_rx_data,0}; //错误

wire [9:0]w_data_10 = {1'b1,i_rx_data,1'b0}; //正确

相关推荐
fei_sun18 小时前
【Verilog】第一章作业
fpga开发·verilog
深圳市雷龙发展有限公司longsto19 小时前
基于FPGA(现场可编程门阵列)的SD NAND图片显示系统是一个复杂的项目,它涉及硬件设计、FPGA编程、SD卡接口、NAND闪存控制以及图像显示等多个方面
fpga开发
9527华安1 天前
FPGA实现PCIE3.0视频采集转10G万兆UDP网络输出,基于XDMA+GTH架构,提供工程源码和技术支持
网络·fpga开发·udp·音视频·xdma·pcie3.0·万兆网
able陈1 天前
为什么verilog中递归函数需要定义为automatic?
fpga开发
fei_sun1 天前
【Verilog】第二章作业
fpga开发·verilog
碎碎思1 天前
如何使用 Vivado 从源码构建 Infinite-ISP FPGA 项目
fpga开发·接口隔离原则
江山如画,佳人北望1 天前
fpga-状态机的设计及应用
fpga开发
晓晓暮雨潇潇1 天前
Xilinx IP核(3)XADC IP核
fpga开发·vivado·xadc·ip核
CWNULT1 天前
AMD(Xilinx) FPGA配置Flash大小选择
fpga开发
碎碎思2 天前
很能体现FPGA硬件思维的一道面试题
fpga开发