荒原之梦·考研数学:2025 考研每日一题(002)

题目

I = lim ⁡ x → 1 ( 1 − x ) ( 1 − x ) ⋯ ( 1 − x n ) ( 1 − x ) n = ? I = \lim_{x \rightarrow 1} \frac{(1-x) (1-\sqrt{x}) \cdots (1- \sqrt[n]{x})}{ (1-x)^{n} } = ? I=x→1lim(1−x)n(1−x)(1−x )⋯(1−nx )=?

解析

I = lim ⁡ x → 1 ( 1 − x ) ( 1 − x ) ⋯ ( 1 − x n ) ( 1 − x ) n = lim ⁡ ( x − 1 ) → 0 ( 1 − x ) [ 1 − 1 + ( x − 1 ) ] ⋯ ( 1 − 1 + ( x − 1 ) n ) ( 1 − x ) n = lim ⁡ ( x − 1 ) → 0 ( 1 − x ) [ − 1 2 ( x − 1 ) ] ⋯ [ − 1 n ( x − 1 ) ] ( 1 − x ) n = lim ⁡ ( 1 − x ) → 0 ( 1 − x ) 1 2 ( 1 − x ) ⋯ 1 n ( 1 − x ) ( 1 − x ) n = lim ⁡ ( 1 − x ) → 0 ( 1 − x ) n ⋅ 1 1 ⋅ 1 2 ⋯ 1 n ( 1 − x ) n = 1 n ! \begin{aligned} I = & \lim_{x \rightarrow 1} \frac{(1-x) (1-\sqrt{x}) \cdots (1- \sqrt[n]{x})}{ (1-x)^{n} } \\ = & \lim_{(x-1) \rightarrow 0} \frac{(1-x) [1-\sqrt{1 + (x-1)}] \cdots (1- \sqrt[n]{1 + (x-1)})}{ (1-x)^{n} } \\ = & \lim_{(x-1) \rightarrow 0} \frac{(1-x) [-\frac{1}{2} (x-1)] \cdots [-\frac{1}{n} (x-1)]}{(1-x)^{n}} \\ = & \lim_{(1-x) \rightarrow 0} \frac{(1-x) \frac{1}{2} (1-x) \cdots \frac{1}{n} (1-x)}{(1-x)^{n}} \\ = & \lim_{(1-x) \rightarrow 0} \frac{(1-x)^{n} \cdot \frac{1}{1} \cdot \frac{1}{2} \cdots \frac{1}{n}}{(1-x)^{n}} = \frac{1}{n!} \end{aligned} I=====x→1lim(1−x)n(1−x)(1−x )⋯(1−nx )(x−1)→0lim(1−x)n(1−x)[1−1+(x−1) ]⋯(1−n1+(x−1) )(x−1)→0lim(1−x)n(1−x)[−21(x−1)]⋯[−n1(x−1)](1−x)→0lim(1−x)n(1−x)21(1−x)⋯n1(1−x)(1−x)→0lim(1−x)n(1−x)n⋅11⋅21⋯n1=n!1

详细解析:当分子中包含无穷多个因式的时候,该怎么计算极限? - 荒原之梦

关注 荒原之梦,专注于工科大学数学和考研数学。

相关推荐
丶Darling.2 小时前
26考研 | 王道 | 数据结构 | 第四章 串
数据结构·考研·kmp
蒙奇D索大5 小时前
【数据结构】图解图论:度、路径、连通性,五大概念一网打尽
数据结构·考研·算法·图论·改行学it
Heorine5 小时前
408 计算机网络 知识点记忆(3)
计算机网络·考研
了一li7 小时前
【408】26考研-王道计算机408
考研
山山而川粤7 小时前
SSM考研信息查询系统
java·大数据·运维·服务器·开发语言·数据库·考研
新中地GIS开发老师9 小时前
2025年地理相关大学考研调剂信息汇总
考研·遥感·测绘·考研调剂·地理信息科学·人文地理·城乡规划
lisw051 天前
计算机专业考研科目及应试攻略
考研·计算机科学技术
丶Darling.1 天前
26考研 | 王道 |数据结构 | 第二章 线性表
数据结构·考研
lwewan2 天前
26考研——栈、队列和数组_数组和特殊矩阵(3)
数据结构·笔记·考研·算法
Non importa2 天前
【初阶数据结构】线性表之双链表
c语言·开发语言·数据结构·c++·考研·链表·学习方法