荒原之梦·考研数学:2025 考研每日一题(002)

题目

I = lim ⁡ x → 1 ( 1 − x ) ( 1 − x ) ⋯ ( 1 − x n ) ( 1 − x ) n = ? I = \lim_{x \rightarrow 1} \frac{(1-x) (1-\sqrt{x}) \cdots (1- \sqrt[n]{x})}{ (1-x)^{n} } = ? I=x→1lim(1−x)n(1−x)(1−x )⋯(1−nx )=?

解析

I = lim ⁡ x → 1 ( 1 − x ) ( 1 − x ) ⋯ ( 1 − x n ) ( 1 − x ) n = lim ⁡ ( x − 1 ) → 0 ( 1 − x ) [ 1 − 1 + ( x − 1 ) ] ⋯ ( 1 − 1 + ( x − 1 ) n ) ( 1 − x ) n = lim ⁡ ( x − 1 ) → 0 ( 1 − x ) [ − 1 2 ( x − 1 ) ] ⋯ [ − 1 n ( x − 1 ) ] ( 1 − x ) n = lim ⁡ ( 1 − x ) → 0 ( 1 − x ) 1 2 ( 1 − x ) ⋯ 1 n ( 1 − x ) ( 1 − x ) n = lim ⁡ ( 1 − x ) → 0 ( 1 − x ) n ⋅ 1 1 ⋅ 1 2 ⋯ 1 n ( 1 − x ) n = 1 n ! \begin{aligned} I = & \lim_{x \rightarrow 1} \frac{(1-x) (1-\sqrt{x}) \cdots (1- \sqrt[n]{x})}{ (1-x)^{n} } \\ = & \lim_{(x-1) \rightarrow 0} \frac{(1-x) [1-\sqrt{1 + (x-1)}] \cdots (1- \sqrt[n]{1 + (x-1)})}{ (1-x)^{n} } \\ = & \lim_{(x-1) \rightarrow 0} \frac{(1-x) [-\frac{1}{2} (x-1)] \cdots [-\frac{1}{n} (x-1)]}{(1-x)^{n}} \\ = & \lim_{(1-x) \rightarrow 0} \frac{(1-x) \frac{1}{2} (1-x) \cdots \frac{1}{n} (1-x)}{(1-x)^{n}} \\ = & \lim_{(1-x) \rightarrow 0} \frac{(1-x)^{n} \cdot \frac{1}{1} \cdot \frac{1}{2} \cdots \frac{1}{n}}{(1-x)^{n}} = \frac{1}{n!} \end{aligned} I=====x→1lim(1−x)n(1−x)(1−x )⋯(1−nx )(x−1)→0lim(1−x)n(1−x)[1−1+(x−1) ]⋯(1−n1+(x−1) )(x−1)→0lim(1−x)n(1−x)[−21(x−1)]⋯[−n1(x−1)](1−x)→0lim(1−x)n(1−x)21(1−x)⋯n1(1−x)(1−x)→0lim(1−x)n(1−x)n⋅11⋅21⋯n1=n!1

详细解析:当分子中包含无穷多个因式的时候,该怎么计算极限? - 荒原之梦

关注 荒原之梦,专注于工科大学数学和考研数学。

相关推荐
一个通信老学姐2 小时前
专业130+总400+武汉理工大学855信号与系统考研经验电子信息与通信工程,真题,大纲,参考书。
考研·信息与通信·信号处理·1024程序员节
爱分享的淘金达人2 天前
25国考照片处理器使用流程图解❗
java·考研·spring·eclipse·tomcat
爱分享的淘金达人2 天前
2025年山东省考报名流程图解
java·考研·spring·eclipse·tomcat·流程图
怎么我想取的名字都被取了?2 天前
C语言模拟题[一]
c语言·考研·算法
shiji-lu3 天前
考研要求掌握的C语言程度(插入排序)
c语言·数据结构·学习·考研·算法·排序算法
怎么我想取的名字都被取了?4 天前
数据结构模拟题[十]
c语言·数据结构·考研·算法
程序员入门进阶4 天前
考研资料分享系统的设计与实现(lw+演示+源码+运行)
考研
混迹网络的权某4 天前
C语言案例——汉诺塔问题
c语言·开发语言·数据结构·考研·算法
WEL测试4 天前
【数学二】线性代数-矩阵-矩阵的概念及运算
线性代数·考研·矩阵·数学二
陈序猿(代码自用版)5 天前
第四章 串
c语言·数据结构·考研·算法