OCR文本纠错思路

文字错误类别:多字 少字 形近字

当前方案

文本纠错思路

简单:

一、构建自定义词典,提高分词正确率。不在词典中,也不是停用词,分成单字的数据极有可能是错字(少部分可能是新词)。错字与前后的词语组成错词 (分词工具:cutword

二、利用字形相似度获取错词的字形最相似词语 参考: https://github.com/tiantian91091317/OCR-Corrector(FASPell采用字符串编辑距离进行计算 )

难点:

  • 字形相似度计算还不够准

  • 错字与前后的词语组成的错词可能不准确

  • 需要不断维护词典

解决的问题

提高检错率

jieba有HMM新词算法,错词无法单独分出来

cutword 词典的一些词 对于 特定领域 可能是错词,需要删除

提高组词正确率

百度 lac 词法分析工具

python 复制代码
# baidu lac

from LAC import LAC

# 装载LAC模型
lac = LAC(mode='lac')

# 单个样本输入,输入为Unicode编码的字符串


text = u"含固书馆学、档案学"

lac_result = lac.run(text)
lac_result
# [['含', '固书馆学', '、', '档案学'], ['v', 'n', 'w', 'n']]

对于部分文本效果不错,但是还有部分文本实体识别粒度太大,比如:

paddlenlp

taskflow.md

容易出现实体识别不出的情况,弃用

python 复制代码
# 批量样本输入, 输入为多个句子组成的list,平均速率更快
texts = [u"LAC是个优秀的分词工具", u"百度是一家高科技公司"]
lac_result = lac.run(texts)


# paddle nlp Taskflow 
from pprint import pprint
from paddlenlp import Taskflow

schema = ['专业名称', '地点', '人名','学校名称','班级名称'] # Define the schema for entity extraction
ie = Taskflow('information_extraction', schema=schema)
sentence = '中外合作办学,新西兰尼尔森马尔佰勤理工学院合作办学'
sentence = '日语、俄语、德语、法语、西班牙语,人校后可参与选拨项目:涉外法治双主学位项目、国际新闻全英文实验班:各语种均有机会进人自标语言国著名高校进行交流学习'
pprint(ie(sentence))

初始思路

目标:通过正确数据对错误数据进行检测与纠正

错字检测+修正:

检测错字:

参考:
kenLM统计语言模型构建与应用
kenlm

  • 将正确数据分词构建词典
    kenlm计算一个句子中连续的n个单词的概率来评估句子结构合法性,kenlm检测错字有两种方法,1.使用招生计划的数据做语料训练模型,让模型对句子合法性打分 2.使用pycorrector kenlm模型,检测错字
    纠正错字:
    参考 https://github.com/shibing624/pycorrector
    检测到的错字在一个词语中,该词任一字都可能是错字。
  • 根据语义编辑距离,找到该错字所在词语与字典中的词最相似的词,如果相似度超出阈值,则替代该词(需要增加形近字字典)
  • 利用正确数据训练一个自然语言处理模型(类bert),不将错字掩盖,预测正确的字,预测字与错字相似度超出阈值,并在词典中,则修正

kenlm

kemlm检错原理:利用 2-gram 、3-gram 语言模型找到错误位置;

利用形近字字表生成候选句(对应上文的使P(O|I)最大的n个 Input);

利用语言困惑度找到得分最低的候选句(对应上文的使P(I)最大的Input)。

使用pycorrector项目加入专有名词字典后(数量大概有几万),检索速度太太太慢。并且训练kenlm模型正确数据不够。所以放弃kenlm.

bert

待正确数据更多后,再训练bert模型

相关推荐
EkihzniY8 小时前
结构化 OCR 技术:破解各类检测报告信息提取难题
大数据·ocr
AI人工智能+21 小时前
一种融合AI与OCR的施工许可证识别技术,提升工程监管效率,实现自动化、精准化处理。
人工智能·自动化·ocr·施工许可证识别
抠头专注python环境配置2 天前
OCR库pytesseract安装保姆级教程
python·ocr·conda
熊猫钓鱼>_>4 天前
深入解析 Monkey OCR:本地化、多语言文本识别的利器与实践指南
ocr
代码AI弗森5 天前
PDF OCR + 大模型:让文档理解不止停留在识字
pdf·ocr
AI人工智能+7 天前
应用银行卡识别技术,构建更安全、便捷的数字身份认证与支付生态
人工智能·ocr·银行卡识别
deephub7 天前
Dots.ocr:告别复杂多模块架构,1.7B参数单一模型统一处理所有OCR任务22
人工智能·深度学习·神经网络·ocr
ccut 第一混8 天前
c#联合Halcon进行OCR字符识别(含halcon-25.05 百度网盘)
c#·ocr·halcon
R-G-B11 天前
【04】OpenCV C++实战篇——实战:发票精准定位,提取指定单元格数据。(倾角计算、旋转矫正、产品定位、目标定位、OCR文字提取)
c++·opencv·ocr·发票精准定位·提取指定单元格数据·倾角计算·旋转矫正
EkihzniY11 天前
单层 PDF 与双层 PDF:一字之差,功能大不同
pdf·ocr