何为OOM(Out of Memory)?

OOM(Out of Memory) 是指程序运行过程中内存不足的情况。在 Spark 应用程序中,OOM 是一个非常常见的问题,尤其是在处理大规模数据集或执行资源密集型的操作时。当 Spark 作业尝试使用的内存超过了为其分配的内存限制时,就会发生 OOM 错误。

Spark 中的 OOM 错误可能发生在多个层面:

  1. Executor OOM
    • 当单个 Executor 进程中的某个任务尝试使用的堆内存超过了为其配置的 JVM 堆内存限制时,会发生 Executor OOM。这通常是由于数据倾斜(某个 key 的数据量特别大)或任务逻辑本身内存消耗较高导致的。
    • 解决方法包括:增加 Executor 的内存配置、优化数据倾斜问题、减少缓存数据量、调整并行度等。
  2. Driver OOM
    • Driver 进程也可能遇到内存不足的情况,尤其是在执行复杂的逻辑或收集大量小对象到 Driver 端时。
    • 解决方法包括:增加 Driver 的内存配置、优化 Driver 端逻辑、减少从 Executor 端收集的数据量等。
  3. Off-Heap Memory OOM
    • Spark 还使用了堆外内存(Off-Heap Memory)来存储一些数据结构,如缓存的广播变量和某些数据结构。当这些堆外内存使用超过配置的限制时,也会发生 OOM。
    • 解决方法包括:增加堆外内存的配置、检查并优化广播变量和数据结构的使用等。

解决 OOM 问题通常需要综合多种策略:

  • 资源调整:增加 Executor 的内存、CPU 核数以及 Driver 的内存配置。
  • 优化代码:减少不必要的内存使用,例如避免使用大的 Shuffled Datasets,优化数据结构和算法以减少内存占用。
  • 数据倾斜处理 :使用 repartitionsalting 技术或自定义分区策略来处理数据倾斜。
  • GC(Garbage Collection)调优:调整 JVM 的垃圾回收策略,例如使用 G1GC 替代 CMS GC。
  • 监控和日志分析:使用 Spark UI、Yarn UI 等工具监控资源使用情况,分析日志找出具体的 OOM 发生位置和原因。

在 Spark 应用程序中处理 OOM 问题时,通常需要进行多次迭代和优化,结合应用程序的具体逻辑和数据特性,逐步找到最优的解决方案

相关推荐
那就学有所成吧(˵¯͒¯͒˵)11 小时前
大数据项目(一):Hadoop 云网盘管理系统开发实践
大数据·hadoop·分布式
KKKlucifer12 小时前
数据资产地图构建:文档安全可视化与主动防御
大数据·安全
2501_9436953313 小时前
高职工业大数据应用专业,怎么找智能制造企业的数据岗?
大数据·信息可视化·制造
得赢科技13 小时前
智能菜谱研发公司推荐 适配中小型餐饮
大数据·运维·人工智能
Hello.Reader14 小时前
Flink 内存与资源调优从 Process Memory 到 Fine-Grained Resource Management
大数据·flink
有代理ip14 小时前
成功请求的密码:HTTP 2 开头响应码深度解析
java·大数据·python·算法·php
jl486382114 小时前
打造医疗设备的“可靠视窗”:医用控温仪专用屏从抗菌设计到EMC兼容的全链路解析
大数据·运维·人工智能·物联网·人机交互
刺客xs15 小时前
git 入门常用命令
大数据·git·elasticsearch
risc12345615 小时前
【Elasticsearch】LeafDocLookup 详述
大数据·elasticsearch·mybatis
qq_124987075315 小时前
基于协同过滤算法的运动场馆服务平台设计与实现(源码+论文+部署+安装)
java·大数据·数据库·人工智能·spring boot·毕业设计·计算机毕业设计