一步步带你了解锁底层

前言

Go语言中的sync包主要提供的对并发操作的支持,标志性的工具有cond(条件变量) once (原子性) 还有 锁,本文会主要向大家介绍Go语言中锁的特性和实现。

锁底层

go中的sync包提供了两种锁的类型,分别是互斥锁sync.Mutex和读写锁sync.RWMutex,这两种锁都属于悲观锁
锁的使用场景是解决多协程下数据竞态的问题,为了保证数据的安全,锁住一些共享资源。以防止并发访问这些共享数据时可能导致的数据不一致问题,获取锁的线程可以正常访问临界区,未获取到锁的线程等待锁释放之后可以尝试获取锁
注:当你想让一个结构体是并发安全的,可以加一个锁字段,比如channel就是这么做的,要注意的是,这个锁字段必须小写,不然调用方也可以进行lock和unlock操作,相当于你把钥匙和锁都交给了别人,锁就失去了应有的作用

mutex

提供了三个方法

  • Lock() 进行加锁操作,在同一个goroutine中必须在锁释放之后才能进行再次上锁,不然会panic
  • Unlock() 进行解锁操作,如果这个时候未加锁会panic,mutex和goroutine不关联,也就是说对于mutex的加锁解锁操作可以发生在多个goroutine间
  • tryLock() 尝试获取锁,当锁被其他goroutine占有,或者锁处于饥饿模式,将立刻返回false,当锁可用时尝试获取锁,获取失败也返回false

实现如下

go 复制代码
type Mutex struct {
    state int32
    sema  uint32
}

Mutex只有两个字段

  • state 表示当前互斥锁的状态,复合型字段
  • sema 信号量变量,用来控制等待goroutine的阻塞休眠和唤醒

state的不同位标识了不同的状态,以此实现了用最小的内存来表示更多的意义

go 复制代码
// 前三个字段标识了锁的状态  剩下的位来标识当前共有多少个goroutine在等待锁
const (
   mutexLocked = 1 << iota // 表示互斥锁的锁定状态
   mutexWoken // 表示从正常模式被从唤醒
   mutexStarving // 当前的互斥锁进入饥饿状态
   mutexWaiterShift = iota // 当前互斥锁上等待者的数量
)

mutex的最开始实现只有正常模式,在正常模式下等待的线程按照先进先出的方式获取锁,但是新创建的goroutine会与刚被唤醒的goroutine竞争,导致刚被唤起的goroutine拿不到锁,从而长期被阻塞。

因此Go在1.9版本中引入了饥饿模式,当goroutine超过1ms没有获取锁,那么就将当前的互斥锁切换到饥饿模式,在该模式下,互斥锁会直接交给等待队列最前面的g,新的g在该状态下既不能获取锁,也不会进入自旋状态,只会在队列的末尾等待。如果一个g获取了互斥锁,并且它在队列的末尾或者等待的时间少于1ms,那么就回到正常模式

加锁

go 复制代码
func (m *Mutex) Lock() {
    // 判断当前锁的状态,如果锁是完全空闲的,即m.state为0,则对其加锁,将m.state的值赋为1
    if atomic.CompareAndSwapInt32(&m.state, 0, mutexLocked) {
        if race.Enabled {
            race.Acquire(unsafe.Pointer(m))
        }
        return
    }
    // Slow path (outlined so that the fast path can be inlined)
    m.lockSlow()
}

func (m *Mutex) lockSlow() {
    var waitStartTime int64 
    starving := false
    awoke := false
    iter := 0
    old := m.state
    ........
}
  1. 通过CAS系统调用判断当前锁的状态,如果是空闲则m.state为0,这个时候对其加锁,将m.state设为1
  2. 如果当前锁已被占用,通过lockSlow方法尝试自旋或者饥饿状态下的竞争,等待锁的释放

lockSlow:

初始化五个字段

  • waitStartTime 用来计算waiter的等待时间
  • starving 饥饿模式标志,如果等待时间超过1ms,则为true
  • awoke 协程是否唤醒,当g在自旋的时候,相当于CPU上已经有正在等锁的协程,为了避免mutex解锁时再唤醒其他协程,自旋时要尝试把mutex设为唤醒状态
  • iter 用来记录协程的自旋次数
  • old 记录当前锁的状态

判断自旋

scss 复制代码
for {
    // 判断是否允许进入自旋 两个条件,条件1是当前锁不能处于饥饿状态
    // 条件2是在runtime_canSpin内实现,其逻辑是在多核CPU运行,自旋的次数小于4
        if old&(mutexLocked|mutexStarving) == mutexLocked && runtime_canSpin(iter) {
      // !awoke 判断当前goroutine不是在唤醒状态
      // old&mutexWoken == 0 表示没有其他正在唤醒的goroutine
      // old>>mutexWaiterShift != 0 表示等待队列中有正在等待的goroutine
      // atomic.CompareAndSwapInt32(&m.state, old, old|mutexWoken) 尝试将当前锁的低2位的Woken状态位设置为1,表示已被唤醒, 这是为了通知在解锁Unlock()中不要再唤醒其他的waiter了
            if !awoke && old&mutexWoken == 0 && old>>mutexWaiterShift != 0 &&
                atomic.CompareAndSwapInt32(&m.state, old, old|mutexWoken) {
                    // 设置当前goroutine唤醒成功
          awoke = true
            }
      // 进行自旋
            runtime_doSpin()
      // 自旋次数
            iter++
      // 记录当前锁的状态
            old = m.state
            continue
        }
}

const active_spin_cnt = 30
func sync_runtime_doSpin() {
    procyield(active_spin_cnt)
}
// asm_amd64.s
TEXT runtime·procyield(SB),NOSPLIT,$0-0
    MOVL    cycles+0(FP), AX
again:
    PAUSE
    SUBL    $1, AX
    JNZ    again
    RET

进入自旋的原因:乐观的认为当前正在持有锁的g能在短时间内归还锁,所以需要一些条件来判断:到底能不能短时间归还

条件如下

  • 自旋的次数<=4
  • cpu必须为多核
  • gomaxprocs>1,最大被同时执行的CPU数目大于1
  • 当前机器上至少存在一个正在运行的P并且处理队列为空

满足条件之后进行循环,次数为30次,也就是执行30次PAUSE指令来占据CPU,进行自旋

解锁

scss 复制代码
func (m *Mutex) Unlock() {
    // Fast path: drop lock bit.
    new := atomic.AddInt32(&m.state, -mutexLocked)
    if new != 0 {
        // Outlined slow path to allow inlining the fast path.
        // To hide unlockSlow during tracing we skip one extra frame when tracing GoUnblock.
        m.unlockSlow(new)
    }
}
func (m *Mutex) unlockSlow(new int32) {
  // 这里表示解锁了一个没有上锁的锁,则直接发生panic
    if (new+mutexLocked)&mutexLocked == 0 {
        throw("sync: unlock of unlocked mutex")
    }
  // 正常模式的释放锁逻辑
    if new&mutexStarving == 0 {
        old := new
        for {
      // 如果没有等待者则直接返回即可
      // 如果锁处于加锁的状态,表示已经有goroutine获取到了锁,可以返回
      // 如果锁处于唤醒状态,这表明有等待的goroutine被唤醒了,不用尝试获取其他goroutine了
      // 如果锁处于饥饿模式,锁之后会直接给等待队头goroutine
            if old>>mutexWaiterShift == 0 || old&(mutexLocked|mutexWoken|mutexStarving) != 0 {
                return
            }
            // 抢占唤醒标志位,这里是想要把锁的状态设置为被唤醒,然后waiter队列-1
            new = (old - 1<<mutexWaiterShift) | mutexWoken
            if atomic.CompareAndSwapInt32(&m.state, old, new) {
        // 抢占成功唤醒一个goroutine
                runtime_Semrelease(&m.sema, false, 1)
                return
            }
      // 执行抢占不成功时重新更新一下状态信息,下次for循环继续处理
            old = m.state
        }
    } else {
    // 饥饿模式释放锁逻辑,直接唤醒等待队列goroutine
        runtime_Semrelease(&m.sema, true, 1)
    }
}

func (m *Mutex) unlockSlow(new int32) {
  // 这里表示解锁了一个没有上锁的锁,则直接发生panic
    if (new+mutexLocked)&mutexLocked == 0 {
        throw("sync: unlock of unlocked mutex")
    }
  // 正常模式的释放锁逻辑
    if new&mutexStarving == 0 {
        old := new
        for {
      // 如果没有等待者则直接返回即可
      // 如果锁处于加锁的状态,表示已经有goroutine获取到了锁,可以返回
      // 如果锁处于唤醒状态,这表明有等待的goroutine被唤醒了,不用尝试获取其他goroutine了
      // 如果锁处于饥饿模式,锁之后会直接给等待队头goroutine
            if old>>mutexWaiterShift == 0 || old&(mutexLocked|mutexWoken|mutexStarving) != 0 {
                return
            }
            // 抢占唤醒标志位,这里是想要把锁的状态设置为被唤醒,然后waiter队列-1
            new = (old - 1<<mutexWaiterShift) | mutexWoken
            if atomic.CompareAndSwapInt32(&m.state, old, new) {
        // 抢占成功唤醒一个goroutine
                runtime_Semrelease(&m.sema, false, 1)
                return
            }
      // 执行抢占不成功时重新更新一下状态信息,下次for循环继续处理
            old = m.state
        }
    } else {
    // 饥饿模式释放锁逻辑,直接唤醒等待队列goroutine
        runtime_Semrelease(&m.sema, true, 1)
    }
}

解锁对于加锁来说简单很多,通过AddInt32方法进行快速解锁,将m.state低位置为0,然后判断值,如果为0,那么就完全空闲了,结束解锁。如果不为0说明当前锁未被占用,不过有等待的g未被唤醒,需要进行一系列唤醒操作,唤醒判断锁的状态,然后进行具体的goroutine唤醒

非阻塞加锁

go 复制代码
func (m *Mutex) TryLock() bool {
  // 记录当前状态
    old := m.state
  //  处于加锁状态/饥饿状态直接获取锁失败
    if old&(mutexLocked|mutexStarving) != 0 {
        return false
    }
    // 尝试获取锁,获取失败直接获取失败
    if !atomic.CompareAndSwapInt32(&m.state, old, old|mutexLocked) {
        return false
    }


    return true
}

TryLock是Go 1.18新加入的方法,不被鼓励使用,主要是两个判断逻辑

  • 判断当前锁的状态,如果锁处于加锁状态或者饥饿状态就直接获取锁失败
  • 尝试获取锁,如果失败则直接失败

结语

本文主要介绍了Go语言中的互斥锁sync.Mutex,相信对大家有所帮助。

创作不易,如果有收获欢迎点赞、评论、收藏,您的支持就是我最大的动力。

相关推荐
2401_882727572 小时前
低代码配置式组态软件-BY组态
前端·后端·物联网·低代码·前端框架
追逐时光者3 小时前
.NET 在 Visual Studio 中的高效编程技巧集
后端·.net·visual studio
大梦百万秋3 小时前
Spring Boot实战:构建一个简单的RESTful API
spring boot·后端·restful
斌斌_____4 小时前
Spring Boot 配置文件的加载顺序
java·spring boot·后端
路在脚下@4 小时前
Spring如何处理循环依赖
java·后端·spring
海绵波波1075 小时前
flask后端开发(1):第一个Flask项目
后端·python·flask
小奏技术6 小时前
RocketMQ结合源码告诉你消息量大为啥不需要手动压缩消息
后端·消息队列
AI人H哥会Java8 小时前
【Spring】控制反转(IoC)与依赖注入(DI)—IoC容器在系统中的位置
java·开发语言·spring boot·后端·spring
凡人的AI工具箱8 小时前
每天40分玩转Django:Django表单集
开发语言·数据库·后端·python·缓存·django
奔跑草-8 小时前
【数据库】SQL应该如何针对数据倾斜问题进行优化
数据库·后端·sql·ubuntu