ValueError: too many values to unpack (expected 2)

########################################################

/usr/local/lib/python3.10/dist-packages/transformers/models/roberta/modeling_roberta.py in forward(self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, inputs_embeds, encoder_hidden_states, encoder_attention_mask, past_key_values, use_cache, output_attentions, output_hidden_states, return_dict)

787 raise ValueError("You have to specify either input_ids or inputs_embeds")

788

--> 789 batch_size, seq_length = input_shape

790 device = input_ids.device if input_ids is not None else inputs_embeds.device

791

ValueError: too many values to unpack (expected 2)

python 复制代码
There are a few possible ways to fix the problem, depending on the desired input format and output shape. Here are some suggestions:

- If the input_ids are supposed to be a single sequence of tokens, then they should have a shape of (batch_size, seq_length), where batch_size is 1 for a single example. In this case, the input_ids should be squeezed or flattened before passing to the model, e.g.:

input_ids = input_ids.squeeze(0) # remove the first dimension if it is 1
# or
input_ids = input_ids.view(-1) # flatten the tensor to a single dimension

- If the input_ids are supposed to be a pair of sequences of tokens, then they should have a shape of (batch_size, 2, seq_length), where batch_size is 1 for a single example and 2 indicates the two sequences. In this case, the input_ids should be split into two tensors along the second dimension and passed as separate arguments to the model, e.g.:

input_ids_1, input_ids_2 = input_ids.split(2, dim=1) # split the tensor into two along the second dimension
input_ids_1 = input_ids_1.squeeze(1) # remove the second dimension if it is 1
input_ids_2 = input_ids_2.squeeze(1) # remove the second dimension if it is 1
# pass the two tensors as separate arguments to the model
output = model(input_ids_1, input_ids_2, ...)

- If the input_ids are supposed to be a batch of sequences of tokens, then they should have a shape of (batch_size, seq_length), where batch_size is the number of examples in the batch. In this case, the input_ids should be passed directly to the model without any modification, e.g.:

output = model(input_ids, ...)
相关推荐
萧鼎6 小时前
深入理解 Python Scapy 库:网络安全与协议分析的瑞士军刀
开发语言·python·web安全
阿拉丁的梦8 小时前
教程1:用vscode->ptvsd-创建和调试一个UI(python)-转载官方翻译(有修正)
开发语言·python
名难取aaa9 小时前
celery solo acks_late得不到预期
python·celery
大翻哥哥11 小时前
Python地理空间数据分析:从地图绘制到智能城市应用
开发语言·python·数据分析
奇舞精选12 小时前
爬虫入门
爬虫·python
爬虫程序猿12 小时前
利用 Python 爬虫获取 1688 商品详情 API 返回值说明(代码示例)实战指南
开发语言·爬虫·python
明月看潮生13 小时前
编程与数学 02-017 Python 面向对象编程 23课题、测试面向对象的程序
开发语言·python·青少年编程·面向对象·编程与数学
小蒜学长13 小时前
基于django的梧桐山水智慧旅游平台设计与开发(代码+数据库+LW)
java·spring boot·后端·python·django·旅游
nightunderblackcat14 小时前
新手向:Python开发简易股票价格追踪器
开发语言·python
感哥14 小时前
DRF 认证
python·django