ValueError: too many values to unpack (expected 2)

########################################################

/usr/local/lib/python3.10/dist-packages/transformers/models/roberta/modeling_roberta.py in forward(self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, inputs_embeds, encoder_hidden_states, encoder_attention_mask, past_key_values, use_cache, output_attentions, output_hidden_states, return_dict)

787 raise ValueError("You have to specify either input_ids or inputs_embeds")

788

--> 789 batch_size, seq_length = input_shape

790 device = input_ids.device if input_ids is not None else inputs_embeds.device

791

ValueError: too many values to unpack (expected 2)

python 复制代码
There are a few possible ways to fix the problem, depending on the desired input format and output shape. Here are some suggestions:

- If the input_ids are supposed to be a single sequence of tokens, then they should have a shape of (batch_size, seq_length), where batch_size is 1 for a single example. In this case, the input_ids should be squeezed or flattened before passing to the model, e.g.:

input_ids = input_ids.squeeze(0) # remove the first dimension if it is 1
# or
input_ids = input_ids.view(-1) # flatten the tensor to a single dimension

- If the input_ids are supposed to be a pair of sequences of tokens, then they should have a shape of (batch_size, 2, seq_length), where batch_size is 1 for a single example and 2 indicates the two sequences. In this case, the input_ids should be split into two tensors along the second dimension and passed as separate arguments to the model, e.g.:

input_ids_1, input_ids_2 = input_ids.split(2, dim=1) # split the tensor into two along the second dimension
input_ids_1 = input_ids_1.squeeze(1) # remove the second dimension if it is 1
input_ids_2 = input_ids_2.squeeze(1) # remove the second dimension if it is 1
# pass the two tensors as separate arguments to the model
output = model(input_ids_1, input_ids_2, ...)

- If the input_ids are supposed to be a batch of sequences of tokens, then they should have a shape of (batch_size, seq_length), where batch_size is the number of examples in the batch. In this case, the input_ids should be passed directly to the model without any modification, e.g.:

output = model(input_ids, ...)
相关推荐
萧鼎6 分钟前
深入解析 Python 的 Word 模板引擎:docxtpl 全面指南
开发语言·python·word
Yeats_Liao13 分钟前
昇腾910B与DeepSeek:国产算力与开源模型的架构适配分析
人工智能·python·深度学习·神经网络·机器学习·架构·开源
智航GIS15 分钟前
11.3 Pandas 模块功能概览
python·信息可视化·pandas
浩子智控16 分钟前
开源RPA选择
python·c#·软件工程
kszlgy17 分钟前
Day48 随机函数与广播机制
python
子午21 分钟前
【2026原创】昆虫识别系统~Python+深度学习+卷积算法+模型训练+人工智能
人工智能·python·深度学习
nju_spy29 分钟前
动手学强化学习上交张伟楠(一)导论 + 多臂老虎机 MAB(ε-greedy+上置信界+汤普森采样)
人工智能·python·强化学习·actor-critic·多臂老虎机·汤普森采样·探索与利用
tjjucheng30 分钟前
专业做小程序定制开发的企业
python
ACERT33333 分钟前
6.吴恩达机器学习——TensorFlow与激活函数
人工智能·python·机器学习