2024 SemEval 冠军

SemEval Task10,本质是一个文本分类的任务,有三个子任务,论文摘要如下:在多维对话中,情绪不仅作为情感交流的重要中介者,还承载着丰富的信息。因此,准确识别交流者的情绪并理解情绪变化的触发因素至关重要。本研究专注于多语言对话情绪识别和基于挑衅者的情绪逆向推理任务,旨在提高对话中情绪理解的准确性和深度。为了实现这一目标,我们提出了一种新颖的模型,MBERT-TextRCNN-PL,旨在有效捕捉交流者的情感信息。此外,我们引入了XGBoost-EC(情绪捕捉器)来识别情绪挑衅者,从而更深入地探究情绪变化背后的因果关系。通过与最先进的模型进行比较,我们的方法在识别对话情绪和挑衅者方面表现出显著改进,为多语言对话情绪理解和情绪逆转研究提供了新的见解和方法。

竞赛结果如下:

代码如下:https://github.com/TW-NLP/SemEval2024-Task10

相关推荐
TG:@yunlaoda360 云老大5 小时前
华为云国际站代理商的UCS主要有什么作用呢?
人工智能·自然语言处理·华为云·云计算
natide5 小时前
词汇/表达差异-1-编辑距离-莱文斯坦距离-Levenshtein
人工智能·深度学习·自然语言处理·知识图谱
会飞的小新5 小时前
大语言模型训练全流程(技术深度拆解版)---以DeepSeek为例
人工智能·语言模型·自然语言处理
jrlong5 小时前
三、Agent原理与最简实践学习笔记
人工智能·自然语言处理
gorgeous(๑>؂<๑)5 小时前
【清华大学-MM25】Open3D VQA:面向无人机开放空间的多模态大语言模型空间推理基准
人工智能·语言模型·自然语言处理·无人机
2401_841495645 小时前
【自然语言处理】共生与引领:自然语言处理与人工智能的深度绑定与协同演进
人工智能·深度学习·自然语言处理·多模态·通用智能·规则驱动·认知智能
蓝海星梦5 小时前
Chain‑of‑Thought 推理链评估全解析:从参考方法到无参考指标
论文阅读·人工智能·自然语言处理·cot
智算菩萨6 小时前
自然语言处理常用Python库:spaCy使用全解
人工智能·python·自然语言处理
2401_841495646 小时前
【自然语言处理】自然语言处理(NLP)的全景应用:从生活便利到产业革新的全维度渗透
人工智能·自然语言处理·大语言模型·多模态融合·统计学习·规则驱动·通用语言智能
2401_8414956420 小时前
【自然语言处理】中文 n-gram 词模型
人工智能·python·算法·自然语言处理·n-gram·中文文本生成模型·kneser-ney平滑