2024 SemEval 冠军

SemEval Task10,本质是一个文本分类的任务,有三个子任务,论文摘要如下:在多维对话中,情绪不仅作为情感交流的重要中介者,还承载着丰富的信息。因此,准确识别交流者的情绪并理解情绪变化的触发因素至关重要。本研究专注于多语言对话情绪识别和基于挑衅者的情绪逆向推理任务,旨在提高对话中情绪理解的准确性和深度。为了实现这一目标,我们提出了一种新颖的模型,MBERT-TextRCNN-PL,旨在有效捕捉交流者的情感信息。此外,我们引入了XGBoost-EC(情绪捕捉器)来识别情绪挑衅者,从而更深入地探究情绪变化背后的因果关系。通过与最先进的模型进行比较,我们的方法在识别对话情绪和挑衅者方面表现出显著改进,为多语言对话情绪理解和情绪逆转研究提供了新的见解和方法。

竞赛结果如下:

代码如下:https://github.com/TW-NLP/SemEval2024-Task10

相关推荐
阿龙AI日记9 小时前
详解Transformer04:Decoder的结构
人工智能·深度学习·自然语言处理
ModestCoder_15 小时前
ROS Bag与导航数据集技术指南
开发语言·人工智能·自然语言处理·机器人·具身智能
7***A44317 小时前
Vue自然语言处理应用
前端·vue.js·自然语言处理
做cv的小昊2 天前
VLM经典论文阅读:【综述】An Introduction to Vision-Language Modeling
论文阅读·人工智能·计算机视觉·语言模型·自然语言处理·bert·transformer
开放知识图谱2 天前
论文浅尝 | 利用条件语句激发和提升大语言模型的因果推理能力(CL2025)
人工智能·语言模型·自然语言处理
人机与认知实验室2 天前
国内主流大语言模型之比较
人工智能·语言模型·自然语言处理
合作小小程序员小小店2 天前
web网页,在线%抖音,舆情,线性回归%分析系统demo,基于python+web+echart+nlp+线性回归,训练,数据库mysql
python·自然语言处理·回归·nlp·线性回归
WWZZ20253 天前
快速上手大模型:深度学习13(文本预处理、语言模型、RNN、GRU、LSTM、seq2seq)
人工智能·深度学习·算法·语言模型·自然语言处理·大模型·具身智能
老友@3 天前
RAG 的诞生:为了让 AI 不再“乱编”
人工智能·搜索引擎·ai·语言模型·自然语言处理·rag
Ma0407133 天前
【论文阅读19】-用于PHM的大型语言模型:优化技术与应用综述
人工智能·语言模型·自然语言处理