论文阅读——MoCo

Momentum Contrast for Unsupervised Visual Representation Learning

动量在数学上理解为加权移动平均:

yt-1是上一时刻输出,xt是当前时刻输入,m是动量,不想让当前时刻输出只依赖于当前时刻的输入,m很大时,变化很缓慢。

无监督视觉表征学习,把对比学习看成一个字典查询任务,动态字典由两部分组成,一个是队列,一个移动平均编码器。

字典大,使用的编码器一样或相似

方法:

懂了选的很大,这样动量编码器更新的非常缓慢,所以保证队列里面的k0,k1,k2...是从相似的编码器得到的。

假设有一个编码好的查询q,编码好的样本集{k0,k1,k2...},可以看做字典的key。假设字典只有一个key和q配对。

infoNCE,NCE是noise contrastive estimation

温度τ,用来控制分布形状,越大,exp函数里面的值越小,exp后也就越小,相当于把值变小了,使函数曲线更平滑。温度小,那exp后值更大,使分布更集中。如果温度设的很大,对比损失对所有负样本一视同仁,模型学习没有轻重,如果温度值设的过小,又会让模型只关注困难样本。但是那些负样本可能是潜在正样本,如果过度关注负样本,模型难收敛,不好泛化。

和交叉熵的k代表类别数量不同,这里的K是负样本数量。

训练过程中,每个batch都有一批新的keys进入队列,同时又有一些老的keys出去。

懂了编码器更新方式:

伪代码:

相关推荐
深蓝学院17 分钟前
密西根大学新作——LightEMMA:自动驾驶中轻量级端到端多模态模型
人工智能·机器学习·自动驾驶
归去_来兮39 分钟前
人工神经网络(ANN)模型
人工智能·机器学习·人工神经网络
2201_7549184141 分钟前
深入理解卷积神经网络:从基础原理到实战应用
人工智能·神经网络·cnn
强盛小灵通专卖员1 小时前
DL00219-基于深度学习的水稻病害检测系统含源码
人工智能·深度学习·水稻病害
Luke Ewin1 小时前
CentOS7.9部署FunASR实时语音识别接口 | 部署商用级别实时语音识别接口FunASR
人工智能·语音识别·实时语音识别·商用级别实时语音识别
Joern-Lee1 小时前
初探机器学习与深度学习
人工智能·深度学习·机器学习
云卓SKYDROID2 小时前
无人机数据处理与特征提取技术分析!
人工智能·科技·无人机·科普·云卓科技
R²AIN SUITE2 小时前
金融合规革命:R²AIN SUITE 如何重塑银行业务智能
大数据·人工智能
新知图书2 小时前
DeepSeek基于注意力模型的可控图像生成
人工智能·深度学习·计算机视觉
白熊1882 小时前
【计算机视觉】OpenCV实战项目: Fire-Smoke-Dataset:基于OpenCV的早期火灾检测项目深度解析
人工智能·opencv·计算机视觉