Neo4j批量导入数据

导入大量数据时使用CSV 文件比较方便。下面分导入节点导入关系两部分说明。

1 节点信息导入

首先导入岗位信息,这里我们用id来标识,其中id对于每一个岗位来说是唯一的。

id信息我们已经事先处理好保存在了csv文件中,格式如下,其中第一行是列名。

csv 复制代码
id
0
1
2
3
4
5

我们首先要把这个csv 文件复制到 Neo4jimport 文件夹下。(具体:在我的机器中为'D:\App\neo4j\Data\relate-data\dbmss\dbms-278f05b5-0b41-40cf-883f-a5617288cb48\import',里面的dbms-278f05b5-0b41-40cf-883f-a5617288cb48对应着希望导入节点的项目。

导入的Cypher语句为:

Cypher 复制代码
LOAD CSV WITH HEADERS FROM 'file:///node_id.csv' AS line FIELDTERMINATOR ','
CREATE (:Job { name: line.id})

看一下添加后的结果。 按照同样的方法添加公司、平均工资、岗位名和教育背景

Cypher 复制代码
LOAD CSV WITH HEADERS FROM 'file:///node_salary.csv' AS line FIELDTERMINATOR ','
CREATE (:Salary { name: line.salary})

LOAD CSV WITH HEADERS FROM 'file:///node_title.csv' AS line FIELDTERMINATOR ','
CREATE (:Title { name: line.title})

LOAD CSV WITH HEADERS FROM 'file:///node_company.csv' AS line FIELDTERMINATOR ','
CREATE (:Company { name: line.company})

LOAD CSV WITH HEADERS FROM 'file:///node_education.csv' AS line FIELDTERMINATOR ','
CREATE (:Education { name: line.education})

characters、duties和skills 数据是使用 entity extraction 技术对岗位描述进行提取得到的,我们首先把每一个处理后的数据保存到 json 文件中。

json 复制代码
{
    "skill": [
        "前端",
        "CSS3",
        "Sass",
        "Less",
        "Vue",
        "JavaScript",
        "HTML5;"
    ],
    "character": [
        "None;"
    ],
    "duty": [
        "前端模块化,组件化开发",
        "Vue",
        "element",
        "UI",
        "Sass",
        "Less",
        "CSS3",
        "HTML5",
        "uni-app",
        "flex/grid布局",
        "项目经验者优先;"
    ]
}

然后遍历文件夹下所有 json 文件,保持数据唯一之后存至 csv 文件中。

Cypher 复制代码
LOAD CSV WITH HEADERS FROM 'file:///unique_characters.csv' AS line FIELDTERMINATOR ','
CREATE (:Characters { name: line.Data})

LOAD CSV WITH HEADERS FROM 'file:///unique_duties.csv' AS line FIELDTERMINATOR ','
CREATE (:Duties { name: line.Data})

LOAD CSV WITH HEADERS FROM 'file:///unique_skills.csv' AS line FIELDTERMINATOR ','
CREATE (:Skills { name: line.Data})

同样查看一下 技能 的节点添加情况:

注意:由于这些节点信息在保存到csv 文件的过程中我就已经去重了,如果没有提前去重,可以把上面的 Cypher 语句中的所有 CREATE 替换为 MERGE 从而实现添加&&去重。

2 关系信息导入

现在有格式如下的csv 文件:

csv 复制代码
id,company,title,education,salary
0,广东倾云科技有限公司,【初级】web前端开发工程师,大专,39.0
1,火眼科技(天津)有限公司,IT运维工程师,大专,36.0
2,郑州玉带信息技术有限责任公司,实习web前端开发工程师,大专,42.0

同样首先把文件复制到项目对应文件夹下的import 文件夹中,然后使用Cypher 语句实现数据导入BELONG关 系:

Cypher 复制代码
LOAD CSV WITH HEADERS FROM 'file:///relation1.csv' AS row
MATCH (a:Job {name: row.id})
MATCH (b:Company {name: row.company})
MERGE (a)-[:BELONG]->(b);

看一下岗位和公司之间的关系 添加 ideducationsalary 之间的关系

Cypher 复制代码
LOAD CSV WITH HEADERS FROM 'file:///relation1.csv' AS row
MATCH (a:Job {name: row.id})
MATCH (b:Education {name: row.education})
MERGE (a)-[:NEED]->(b);

LOAD CSV WITH HEADERS FROM 'file:///relation1.csv' AS row
MATCH (a:Job {name: row.id})
MATCH (b:Salary {name: row.salary})
MERGE (a)-[:OFFER]->(b);

添加 idskilldutycharacter 之间的关系

Cypher 复制代码
LOAD CSV WITH HEADERS FROM 'file:///relation_characters.csv' AS row
MATCH (a:Job {name: row.id})
MATCH (b:Characters {name: row.character})
MERGE (a)-[:REQUIRE]->(b);

LOAD CSV WITH HEADERS FROM 'file:///relation_skills.csv' AS row
MATCH (a:Job {name: row.id})
MATCH (b:Skills {name: row.skill})
MERGE (a)-[:MASTER]->(b);

LOAD CSV WITH HEADERS FROM 'file:///relation_duties.csv' AS row
MATCH (a:Job {name: row.id})
MATCH (b:Duties {name: row.duty})
MERGE (a)-[:RESPONSIBEL]->(b);

idduty 之间的关系

相关推荐
九年义务漏网鲨鱼2 小时前
【大模型学习 | MINIGPT-4原理】
人工智能·深度学习·学习·语言模型·多模态
元宇宙时间2 小时前
Playfun即将开启大型Web3线上活动,打造沉浸式GameFi体验生态
人工智能·去中心化·区块链
开发者工具分享2 小时前
文本音频违规识别工具排行榜(12选)
人工智能·音视频
产品经理独孤虾2 小时前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像
人工智能·机器学习·ai·大模型·产品经理·商品画像·商品工业属性
老任与码3 小时前
Spring AI Alibaba(1)——基本使用
java·人工智能·后端·springaialibaba
蹦蹦跳跳真可爱5893 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉
雷羿 LexChien3 小时前
从 Prompt 管理到人格稳定:探索 Cursor AI 编辑器如何赋能 Prompt 工程与人格风格设计(上)
人工智能·python·llm·编辑器·prompt
两棵雪松4 小时前
如何通过向量化技术比较两段文本是否相似?
人工智能
heart000_14 小时前
128K 长文本处理实战:腾讯混元 + 云函数 SCF 构建 PDF 摘要生成器
人工智能·自然语言处理·pdf
敲键盘的小夜猫4 小时前
LLM复杂记忆存储-多会话隔离案例实战
人工智能·python·langchain