ptorch中的nn.KLDivLoss:KL散度损失

KL散度被广泛应用于度量分布之间的差异,其形式为: D K L ( P ∣ ∣ Q ) = ∑ i = 1 N p i l o g p i q i = ∑ i = 1 N p i ∗ ( l o g p i − l o g q i ) D_{KL}(P||Q)=\sum_{i=1}^{N}p_ilog\frac{p_i}{q_i}=\sum_{i=1}^{N}p_i*(logp_i-logq_i) DKL(P∣∣Q)=i=1∑Npilogqipi=i=1∑Npi∗(logpi−logqi)  pytorch中给出了两种不同的方法用于计算KL散度,分别是torch.nn.functional.kl_div()和torch.nn.KLDivLoss(),两者计算效果类似,区别无非是直接计算和作为损失函数类,我们重点看torch.nn.KLDivLoss(),在深度学习中是一个很常见的损失。官方文档地址为:

nn.KLDivLoss:https://pytorch.org/docs/stable/generated/torch.nn.KLDivLoss.html#torch.nn.KLDivLoss\>

函数定义:

c 复制代码
torch.nn.KLDivLoss(size_average=None, reduce=None, reduction='mean', log_target=False)

其中,size_average与reduce参数已被弃用,具体功能由参数reduction代替;reduction:指定损失输出的形式,有四种选择:none|mean|batchmean|sum。none:损失不做任何处理,直接输出一个数组;mean:将得到的损失求平均值再输出;batchmean:将输出的总和除以batchsize;sum:将得到的损失求和再输出;log_target:指定是否对输入的target使用log操作。

在使用上,nn.KLDivLoss和交叉熵损失是不同的,对于pytorch中的交叉熵损失torch.nn.CrossEntropyLoss,我们给进的网络预测结果不需要进行softmax处理,给进的labels可以仅仅是一个label的list,函数中内置了对标签进行的ont-hot操作,而在nn.KLDivLoss中并没有这种操作,因此,对于nn.KLDivLoss输入的两个分布input和target,我们首先要对其进行softmax操作。此外,当log_target参数设定为False时,计算方式为: P ∗ ( l o g P − Q ) P*(logP-Q) P∗(logP−Q),这与定义式的结果不同,因此,还需要对input取对数操作(在官方文档中也有提及,建议将input映射到对数空间,防止数值下溢),一个示例代码为:

c 复制代码
import torch
import torch.nn.Functional as F
torch.nn.KLDivLoss(F.softmax(Q).log(), F.softmax(P), reduction='mean')
相关推荐
不懒不懒7 小时前
【从零开始:PyTorch实现MNIST手写数字识别全流程解析】
人工智能·pytorch·python
工程师老罗1 天前
基于Pytorch的YOLOv1 的网络结构代码
人工智能·pytorch·yolo
JarryStudy1 天前
HCCL与PyTorch集成 hccl_comm.cpp DDP后端注册全流程
人工智能·pytorch·python·cann
Eloudy1 天前
用 Python 直写 CUDA Kernel的技术,CuTile、TileLang、Triton 与 PyTorch 的深度融合实践
人工智能·pytorch
Rorsion1 天前
PyTorch实现线性回归
人工智能·pytorch·线性回归
骇城迷影1 天前
Makemore 核心面试题大汇总
人工智能·pytorch·python·深度学习·线性回归
mailangduoduo1 天前
零基础教学连接远程服务器部署项目——VScode版本
服务器·pytorch·vscode·深度学习·ssh·gpu算力
多恩Stone1 天前
【3D AICG 系列-6】OmniPart 训练流程梳理
人工智能·pytorch·算法·3d·aigc
前端摸鱼匠2 天前
YOLOv8 环境配置全攻略:Python、PyTorch 与 CUDA 的和谐共生
人工智能·pytorch·python·yolo·目标检测
纤纡.2 天前
PyTorch 入门精讲:从框架选择到 MNIST 手写数字识别实战
人工智能·pytorch·python