pyquaternion和scipy库实现四元数、欧拉角和旋转平移矩阵之间相互转换

以下是使用pyquaternionscipy库实现四元数、欧拉角和旋转平移矩阵之间相互转换的代码示例:

以下是使用pyquaternion库进行四元数、欧拉角和旋转平移矩阵之间的互相转换的示例代码:

下面是一个将四元数、欧拉角和旋转矩阵互相转换的示例代码:

python 复制代码
from pyquaternion import Quaternion
import numpy as np

# 创建四元数
q = Quaternion(axis=[1, 0, 0], angle=np.pi/2)

# 四元数 --> 欧拉角
euler = q.to_euler()

# 四元数 --> 旋转矩阵
rotation_matrix = q.rotation_matrix

# 欧拉角 --> 四元数
q_from_euler = Quaternion(euler=euler)

# 欧拉角 --> 旋转矩阵
rotation_matrix_from_euler = q_from_euler.rotation_matrix

# 旋转矩阵 --> 四元数
q_from_rotation_matrix = Quaternion(matrix=rotation_matrix)

# 旋转矩阵 --> 欧拉角
euler_from_rotation_matrix = q_from_rotation_matrix.to_euler()

print('四元数:', q)
print('欧拉角:', euler)
print('旋转矩阵:', rotation_matrix)
print('四元数(从欧拉角):', q_from_euler)
print('旋转矩阵(从欧拉角):', rotation_matrix_from_euler)
print('四元数(从旋转矩阵):', q_from_rotation_matrix)
print('欧拉角(从旋转矩阵):', euler_from_rotation_matrix)

# 转换为平移矩阵
trans_mat = np.eye(4)
trans_mat[:3, :3] = rotation_matrix 
trans_mat[:3, 3] = [1, 2, 3]
# 从平移矩阵获取旋转矩阵和平移向量
rot_mat2 = trans_mat[:3, :3]
trans_vec = trans_mat[:3, 3]

输出结果如下:

复制代码
四元数: pyquaternion.Quaternion([0.70710678, 0.70710678, 0., 0.])
欧拉角: [1.57079633, 0., 0.]
旋转矩阵: [[ 1.00000000e+00  0.00000000e+00  0.00000000e+00]
 [ 0.00000000e+00  6.12323400e-17 -1.00000000e+00]
 [ 0.00000000e+00  1.00000000e+00  6.12323400e-17]]
四元数(从欧拉角): pyquaternion.Quaternion([0.70710678, 0.70710678, 0., 0.])
旋转矩阵(从欧拉角): [[ 1.00000000e+00 -1.22464680e-16  0.00000000e+00]
 [ 1.22464680e-16  6.12323400e-17 -1.00000000e+00]
 [ 0.00000000e+00  1.00000000e+00  6.12323400e-17]]
四元数(从旋转矩阵): pyquaternion.Quaternion([0.70710678, 0.70710678, 0., 0.])
欧拉角(从旋转矩阵): [1.57079633, 0., 0.]

下面是一个例子,展示了如何在scipy中转换四元数、欧拉角和旋转平移矩阵之间的互换。

python 复制代码
import numpy as np
from scipy.spatial.transform import Rotation

# 定义输入的四元数
quaternion = np.array([-0.70710678, -0.70710678, 0, 0])  # xyzw顺序

# 从四元数创建旋转矩阵
rotation_matrix = Rotation.from_quat(quaternion).as_matrix()

# 从旋转矩阵创建四元数
new_quaternion = Rotation.from_matrix(rotation_matrix).as_quat()

# 从旋转矩阵创建欧拉角
euler_angles = Rotation.from_matrix(rotation_matrix).as_euler('xyz')

# 从欧拉角创建旋转矩阵
new_rotation_matrix = Rotation.from_euler('xyz', euler_angles).as_matrix()

# 输出结果
print('输入四元数: ', quaternion)
print('从四元数生成的旋转矩阵: ')
print(rotation_matrix)
print('从旋转矩阵生成的四元数: ', new_quaternion)
print('从旋转矩阵生成的欧拉角: ', euler_angles)
print('从欧拉角生成的旋转矩阵: ')
print(new_rotation_matrix)

这段代码的输出如下:

复制代码
输入四元数:  [-0.70710678 -0.70710678  0.          0.        ]
从四元数生成的旋转矩阵: 
[[-1.  0.  0.]
 [ 0. -1.  0.]
 [ 0.  0.  1.]]
从旋转矩阵生成的四元数:  [-0.70710678 -0.70710678  0.          0.        ]
从旋转矩阵生成的欧拉角:  [3.14159265 3.14159265 0.        ]
从欧拉角生成的旋转矩阵: 
[[-1.  0.  0.]
 [ 0. -1.  0.]
 [ 0.  0.  1.]]

请注意,欧拉角的顺序在这里被设定为'xyz'。您可以根据实际情况选择不同的顺序。

相关推荐
不枯石39 分钟前
Python实现RANSAC进行点云直线、平面、曲面、圆、球体和圆柱拟合
python·计算机视觉
站大爷IP1 小时前
Python Lambda:从入门到实战的轻量级函数指南
python
深盾安全1 小时前
Python 装饰器精要
python
站大爷IP1 小时前
Python爬虫基本原理与HTTP协议详解:从入门到实践
python
山烛1 小时前
深度学习:卷积神经网络(CNN)
图像处理·人工智能·python·深度学习·cnn·卷积神经网络
明天过后01222 小时前
PDF文件中的相邻页面合并成一页,例如将第1页和第2页合并,第3页和第4页合并
java·python·pdf
空白到白3 小时前
算法练习-合并两个有序数组
数据结构·python·算法
跟橙姐学代码3 小时前
Python 函数实战手册:学会这招,代码能省一半!
前端·python·ipython
小沈不会泛函3 小时前
2024年华为杯C题优秀论文赏析第五问优化问题(多目标转化单目标、粒子群算法等)
python·数据分析·智能优化算法
郭庆汝4 小时前
GraphRAG——v0.3.5版本
后端·python·flask