whisper-v3模型部署环境执行

1. 安装whisperV3

  1. github git clone https://github.com/openai/whisper.git
  2. pip install -U openai-whisper
  3. pip install setuptools-rust
    这些都没有安装 但是github下载的版本是能执行成功的
  4. pip install accelerate
  5. pip install soundfile
  6. pip install librosa
  7. pip install torchaudio

requirements.txt

复制代码
numba
numpy
torch
tqdm
more-itertools
tiktoken
triton>=2.0.0,<3;platform_machine=="x86_64" and sys_platform=="linux" or sys_platform=="linux2"

github官方版本

要进到whisper目录里面, 执行脚本要和whisper/whisper目录同级。这样就执行成功了。

py 复制代码
import whisper

model = whisper.load_model("base")
result = model.transcribe("audio.mp3")
print(result["text"])

遇到的名词解释

1. 大模型的弱标签

在大模型中,弱标签(Weak Labels)通常指的是相对于强标签(Strong Labels)而言的标签类型。强标签是指对每个样本都有明确、准确的标签,可以直接用于训练模型的监督学习任务。而弱标签则指的是对样本的标签信息不够准确或完整,可能存在噪声、不确定性或模糊性。

弱标签可以是多种形式,常见的包括但不限于:

  1. 部分标签(Partial Labels):只对样本的部分特征或属性进行标记,而不是对整个样本进行标记。
  2. 噪声标签(Noisy Labels):由于标注过程中的错误或不确定性而产生的标签。
  3. 不确定标签(Uncertain Labels):对于某些样本标签的确定性不高,存在一定程度的不确定性。
  4. 模糊标签(Ambiguous Labels):标签含义不明确或模糊,可能存在多种解释或理解。

在使用弱标签进行训练时,通常需要采取一些特殊的处理方法来处理标签的不确定性和噪声,以提高模型的鲁棒性和泛化能力。这包括使用弱标签推理(Weak Label Inference)、噪声过滤(Noise Filtering)、半监督学习(Semi-Supervised Learning)等技术来充分利用弱标签信息进行模型训练。

参考文档

论文: https://cdn.openai.com/papers/whisper.pdf

whisper-v3 model-card https://huggingface.co/openai/whisper-large-v3

知乎胡儿 v3介绍 https://zhuanlan.zhihu.com/p/662906303

安装参考 https://zhuanlan.zhihu.com/p/666969310

github https://github.com/openai/whisper/blob/main/model-card.md

根据官方文档安装就可以了 https://github.com/openai/whisper/blob/main/README.md

官网 https://openai.com/research/whisper

相关推荐
数据智能老司机3 小时前
精通 Python 设计模式——分布式系统模式
python·设计模式·架构
数据智能老司机4 小时前
精通 Python 设计模式——并发与异步模式
python·设计模式·编程语言
数据智能老司机4 小时前
精通 Python 设计模式——测试模式
python·设计模式·架构
数据智能老司机4 小时前
精通 Python 设计模式——性能模式
python·设计模式·架构
c8i4 小时前
drf初步梳理
python·django
每日AI新事件4 小时前
python的异步函数
python
这里有鱼汤5 小时前
miniQMT下载历史行情数据太慢怎么办?一招提速10倍!
前端·python
databook14 小时前
Manim实现脉冲闪烁特效
后端·python·动效
程序设计实验室15 小时前
2025年了,在 Django 之外,Python Web 框架还能怎么选?
python
倔强青铜三16 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试