whisper-v3模型部署环境执行

1. 安装whisperV3

  1. github git clone https://github.com/openai/whisper.git
  2. pip install -U openai-whisper
  3. pip install setuptools-rust
    这些都没有安装 但是github下载的版本是能执行成功的
  4. pip install accelerate
  5. pip install soundfile
  6. pip install librosa
  7. pip install torchaudio

requirements.txt

复制代码
numba
numpy
torch
tqdm
more-itertools
tiktoken
triton>=2.0.0,<3;platform_machine=="x86_64" and sys_platform=="linux" or sys_platform=="linux2"

github官方版本

要进到whisper目录里面, 执行脚本要和whisper/whisper目录同级。这样就执行成功了。

py 复制代码
import whisper

model = whisper.load_model("base")
result = model.transcribe("audio.mp3")
print(result["text"])

遇到的名词解释

1. 大模型的弱标签

在大模型中,弱标签(Weak Labels)通常指的是相对于强标签(Strong Labels)而言的标签类型。强标签是指对每个样本都有明确、准确的标签,可以直接用于训练模型的监督学习任务。而弱标签则指的是对样本的标签信息不够准确或完整,可能存在噪声、不确定性或模糊性。

弱标签可以是多种形式,常见的包括但不限于:

  1. 部分标签(Partial Labels):只对样本的部分特征或属性进行标记,而不是对整个样本进行标记。
  2. 噪声标签(Noisy Labels):由于标注过程中的错误或不确定性而产生的标签。
  3. 不确定标签(Uncertain Labels):对于某些样本标签的确定性不高,存在一定程度的不确定性。
  4. 模糊标签(Ambiguous Labels):标签含义不明确或模糊,可能存在多种解释或理解。

在使用弱标签进行训练时,通常需要采取一些特殊的处理方法来处理标签的不确定性和噪声,以提高模型的鲁棒性和泛化能力。这包括使用弱标签推理(Weak Label Inference)、噪声过滤(Noise Filtering)、半监督学习(Semi-Supervised Learning)等技术来充分利用弱标签信息进行模型训练。

参考文档

论文: https://cdn.openai.com/papers/whisper.pdf

whisper-v3 model-card https://huggingface.co/openai/whisper-large-v3

知乎胡儿 v3介绍 https://zhuanlan.zhihu.com/p/662906303

安装参考 https://zhuanlan.zhihu.com/p/666969310

github https://github.com/openai/whisper/blob/main/model-card.md

根据官方文档安装就可以了 https://github.com/openai/whisper/blob/main/README.md

官网 https://openai.com/research/whisper

相关推荐
幻云20106 小时前
Python深度学习:从筑基到登仙
前端·javascript·vue.js·人工智能·python
仰望星空@脚踏实地6 小时前
本地Python脚本是否存在命令注入风险
python·datakit·命令注入
LOnghas12117 小时前
果园环境中道路与树木结构检测的YOLO11-Faster语义分割方法
python
2501_944526429 小时前
Flutter for OpenHarmony 万能游戏库App实战 - 蜘蛛纸牌游戏实现
android·java·python·flutter·游戏
飞Link9 小时前
【Django】Django的静态文件相关配置与操作
后端·python·django
Ulyanov10 小时前
从桌面到云端:构建Web三维战场指挥系统
开发语言·前端·python·tkinter·pyvista·gui开发
CCPC不拿奖不改名11 小时前
两种完整的 Git 分支协作流程
大数据·人工智能·git·python·elasticsearch·搜索引擎·自然语言处理
a努力。11 小时前
字节Java面试被问:TCP的BBR拥塞控制算法原理
java·开发语言·python·tcp/ip·elasticsearch·面试·职场和发展
费弗里11 小时前
一个小技巧轻松提升Dash应用debug效率
python·dash
小小测试开发11 小时前
Python浮点型常用方法全解析:从基础到实战
python