groupby().agg()应用一

背景:我需要筛选出所有价格都为1的itemId

实现代码: df.groupby("itemId").agg({"discountePrice":lambda x: x.max()==x.min() and x==1})

解析:

这段代码是使用 Pandas 库中的 groupby 方法来对 DataFrame 中的数据进行分组,并且对每个分组进行聚合操作。在这个例子中,数据将按照 "itemId" 列进行分组,然后对每个分组中的 "discountePrice" 列进行操作。

具体来说,agg 方法将应用于每个分组,并且使用一个字典来指定每个列要应用的聚合函数。在这里,字典中有一个键值对,其中键是要应用聚合函数的列名 "discountePrice",而值是一个 lambda 函数。Lambda 函数检查每个分组中 "discountePrice" 列的值是否都相等且等于1,如果是,则返回 True,否则返回 False。

下面是一个例子:

假设我们有以下的 DataFrame:

itemId discountePrice
A 1
A 1
A 1
B 2
B 2
C 1
C 1
C 1

运行代码 df.groupby("itemId").agg({"discountePrice":lambda x: x.max()==x.min() and x==1}) 后,得到的输出结果将是一个新的 DataFrame,内容如下:

itemId discountePrice
A True
B False
C True

这里,对于 "itemId" 为 A 的分组,"discountePrice" 列的最大值和最小值都是1,且该列的所有值都等于1,因此返回 True。对于 "itemId" 为 B 的分组,最大值和最小值不相等,因此返回 False。而对于 "itemId" 为 C 的分组,最大值和最小值都是1,且所有值都等于1,因此返回 True。

问题一:如何得到筛选后的df

实现代码:result=df1[df1["discountePrice"]].index

问题:result=df1[df1["discountePrice"]].index为什么能得到discountePrice==True的呢?

解析:这是一种布尔索引操作,它会选择 DataFrame 中 "discountePrice" 列值为 True 的行。

举例:

当你使用布尔索引操作时,你实际上是在根据某些条件从 DataFrame 中选择行。让我通过一个例子详细说明:

假设我们有以下 DataFrame,其中包含了商品的信息:

python 复制代码
pythonCopy code
import pandas as pd

data = {
    'item_id': ['A', 'B', 'C', 'D', 'E'],
    'discounted': [True, False, True, False, True],
    'price': [10, 20, 15, 25, 12]
}

df = pd.DataFrame(data)
print(df)

这将输出:

python 复制代码
mathematicaCopy code
  item_id  discounted  price
0       A        True     10
1       B       False     20
2       C        True     15
3       D       False     25
4       E        True     12

现在假设我们想要选择那些有折扣的商品,也就是 "discounted" 列值为 True 的行。我们可以使用布尔索引操作来实现:

bash 复制代码
pythonCopy code
discounted_items = df[df['discounted']]
print(discounted_items)

这将输出:

python 复制代码
mathematicaCopy code
  item_id  discounted  price
0       A        True     10
2       C        True     15
4       E        True     12

在这个例子中,df['discounted'] 返回一个布尔 Series,指示每个商品是否有折扣。然后,我们将该 Series 用作 DataFrame 的索引,这将返回那些 "discounted" 列值为 True 的行。

相关推荐
GeekABC2 小时前
FastAPI系列06:FastAPI响应(Response)
开发语言·python·fastapi·web
fen_fen2 小时前
Python3:Jupyter Notebook 安装和配置
ide·python·jupyter
float_六七3 小时前
Python语言基础知识详解:分支结构控制语句
python
声声codeGrandMaster3 小时前
django之优化分页功能(利用参数共存及封装来实现)
数据库·后端·python·django
Johny_Zhao3 小时前
OpenStack 全套搭建部署指南(基于 Kolla-Ansible)
linux·python·信息安全·云计算·openstack·shell·yum源·系统运维
27669582923 小时前
海关 瑞数 后缀分析 rs
java·python·rs·瑞数·海关·瑞数后缀·后缀生成
学c真好玩4 小时前
Django创建的应用目录详细解释以及如何操作数据库自动创建表
后端·python·django
沐暖沐4 小时前
Django(快速上手版)
python·django
槑槑紫4 小时前
pytorch(gpu版本安装)
人工智能·pytorch·python
知识中的海王4 小时前
猿人学web端爬虫攻防大赛赛题第15题——备周则意怠-常见则不疑
爬虫·python