groupby().agg()应用一

背景:我需要筛选出所有价格都为1的itemId

实现代码: df.groupby("itemId").agg({"discountePrice":lambda x: x.max()==x.min() and x==1})

解析:

这段代码是使用 Pandas 库中的 groupby 方法来对 DataFrame 中的数据进行分组,并且对每个分组进行聚合操作。在这个例子中,数据将按照 "itemId" 列进行分组,然后对每个分组中的 "discountePrice" 列进行操作。

具体来说,agg 方法将应用于每个分组,并且使用一个字典来指定每个列要应用的聚合函数。在这里,字典中有一个键值对,其中键是要应用聚合函数的列名 "discountePrice",而值是一个 lambda 函数。Lambda 函数检查每个分组中 "discountePrice" 列的值是否都相等且等于1,如果是,则返回 True,否则返回 False。

下面是一个例子:

假设我们有以下的 DataFrame:

itemId discountePrice
A 1
A 1
A 1
B 2
B 2
C 1
C 1
C 1

运行代码 df.groupby("itemId").agg({"discountePrice":lambda x: x.max()==x.min() and x==1}) 后,得到的输出结果将是一个新的 DataFrame,内容如下:

itemId discountePrice
A True
B False
C True

这里,对于 "itemId" 为 A 的分组,"discountePrice" 列的最大值和最小值都是1,且该列的所有值都等于1,因此返回 True。对于 "itemId" 为 B 的分组,最大值和最小值不相等,因此返回 False。而对于 "itemId" 为 C 的分组,最大值和最小值都是1,且所有值都等于1,因此返回 True。

问题一:如何得到筛选后的df

实现代码:result=df1[df1["discountePrice"]].index

问题:result=df1[df1["discountePrice"]].index为什么能得到discountePrice==True的呢?

解析:这是一种布尔索引操作,它会选择 DataFrame 中 "discountePrice" 列值为 True 的行。

举例:

当你使用布尔索引操作时,你实际上是在根据某些条件从 DataFrame 中选择行。让我通过一个例子详细说明:

假设我们有以下 DataFrame,其中包含了商品的信息:

python 复制代码
pythonCopy code
import pandas as pd

data = {
    'item_id': ['A', 'B', 'C', 'D', 'E'],
    'discounted': [True, False, True, False, True],
    'price': [10, 20, 15, 25, 12]
}

df = pd.DataFrame(data)
print(df)

这将输出:

python 复制代码
mathematicaCopy code
  item_id  discounted  price
0       A        True     10
1       B       False     20
2       C        True     15
3       D       False     25
4       E        True     12

现在假设我们想要选择那些有折扣的商品,也就是 "discounted" 列值为 True 的行。我们可以使用布尔索引操作来实现:

bash 复制代码
pythonCopy code
discounted_items = df[df['discounted']]
print(discounted_items)

这将输出:

python 复制代码
mathematicaCopy code
  item_id  discounted  price
0       A        True     10
2       C        True     15
4       E        True     12

在这个例子中,df['discounted'] 返回一个布尔 Series,指示每个商品是否有折扣。然后,我们将该 Series 用作 DataFrame 的索引,这将返回那些 "discounted" 列值为 True 的行。

相关推荐
陈天伟教授12 小时前
人工智能训练师认证教程(2)Python os入门教程
前端·数据库·python
2301_7644413313 小时前
Aella Science Dataset Explorer 部署教程笔记
笔记·python·全文检索
爱笑的眼睛1113 小时前
GraphQL:从数据查询到应用架构的范式演进
java·人工智能·python·ai
BoBoZz1913 小时前
ExtractSelection 选择和提取数据集中的特定点,以及如何反转该选择
python·vtk·图形渲染·图形处理
liwulin050613 小时前
【PYTHON-YOLOV8N】如何自定义数据集
开发语言·python·yolo
木头左13 小时前
LSTM量化交易策略中时间序列预测的关键输入参数分析与Python实现
人工智能·python·lstm
电子硬件笔记14 小时前
Python语言编程导论第七章 数据结构
开发语言·数据结构·python
HyperAI超神经14 小时前
【vLLM 学习】Prithvi Geospatial Mae
人工智能·python·深度学习·学习·大语言模型·gpu·vllm
逻极14 小时前
Python MySQL防SQL注入实战:从字符串拼接的坑到参数化查询的救赎
python·mysql·安全·sql注入
赫凯14 小时前
【强化学习】第一章 强化学习初探
人工智能·python·强化学习