什么是langchain

  1. 概念

LangChain 是一个用于开发由语言模型驱动的应用程序的框架。他主要拥有 2 个能力:

-可以将 LLM 模型(大规模语言模型)与外部数据源进行连接
-允许与 LLM 模型进行交互
  1. 基础功能

支持多种模型接口,比如 OpenAI、Hugging Face、AzureOpenAI ...

Fake LLM,用于测试缓存的支持,比如 in-mem(内存)、SQLite、Redis、SQL用量记录

支持流模式(就是一个字一个字的返回,类似打字效果)

  1. 核心模块

Langchain有6大核心模块:

Models:模型,是各种类型的模型和模型集成。

Prompts:提示,包括提示管理、提示优化和提示序列化。

Memory:记忆,用来保存和模型交互时的上下文状态。

Indexes:索引,用来结构化文档,以便和模型交互。包括文档加载程序、向量存储器、文本分割器和检索器等。

Agents:代理,决定模型采取哪些行动,执行并且观察流程,直到完成为止。

Chains:链,一系列对各种组件的调用。

  1. 用途

    LangChain 通常被用作「粘合剂」,将构建 LLM 应用所需的各个模块连接在一起。使用Langchain中不同组件的特性和能力,可以构建不同场景下的应用,如聊天机器人、基于文档的问答、知识管理、个人助理、Agent智能体等等。

  2. 落地实践

    1)通过 Loader 加载远程文档

2)通过 Splitter 基于 Token 进行文档拆分

3)加载 summarize 链,链类型为 refine,迭代进行总结

r 复制代码
作者:京东云
链接:https://www.zhihu.com/question/609483833/answer/3146379316
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

from langchain.prompts import PromptTemplate
from langchain.document_loaders import PlaywrightURLLoader
from langchain.chains.summarize import load_summarize_chain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from azure_chat_llm import llm

loader = PlaywrightURLLoader(urls=["https://content.jr.jd.com/article/index.html?pageId=708258989"])
data = loader.load()

text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
    model_name="gpt-3.5-turbo",
    allowed_special="all",
    separators=["\n\n", "\n", "。", ","],
    chunk_size=7000,
    chunk_overlap=0
)

prompt_template = '''
作为一个资深编辑,请针对 >>> 和 <<< 中间的文本写一段摘要。 
>>> {text} <<<
'''
refine_template = '''
作为一个资深编辑,基于已有的一段摘要:{existing_answer},针对 >>> 和 <<< 中间的文本完善现有的摘要。 
>>> {text} <<<
'''

PROMPT = PromptTemplate(template=prompt_template, input_variables=["text"])
REFINE_PROMPT = PromptTemplate(
    template=refine_template, input_variables=["existing_answer", "text"]
)

chain = load_summarize_chain(llm, chain_type="refine", question_prompt=PROMPT, refine_prompt=REFINE_PROMPT, verbose=False)

docs = text_splitter.split_documents(data)
result = chain.run(docs)
print(result)
相关推荐
CJenny1 天前
LangChain 学习笔记
笔记·学习·langchain
背太阳的牧羊人1 天前
用于与多个数据库聊天的智能 SQL 代理问答和 RAG 系统(2) —— 从 PDF 文档生成矢量数据库 (VectorDB),然后存储文本的嵌入向量
数据库·人工智能·sql·langchain·pdf
小码农叔叔2 天前
【大模型】百度千帆大模型对接LangChain使用详解
langchain·langchain使用详解·langchain对接千帆·langchain组件使用详解·langchain使用·langchain组件使用·langchain组件
背太阳的牧羊人2 天前
使用 SQL 和表格数据进行问答和 RAG(7)—将表格数据(CSV 或 Excel 文件)加载到向量数据库(ChromaDB)中
数据库·sql·langchain·excel
背太阳的牧羊人3 天前
使用 SQL 和表格数据进行问答和 RAG(6)—将指定目录下的 CSV 或 Excel 文件导入 SQLite 数据库
数据库·sql·langchain·sqlite·excel
背太阳的牧羊人4 天前
使用 SQL 和表格数据进行问答和 RAG(4)— 使用 SQL 与 CSV 数据交互
sql·langchain·csv
桂月二二6 天前
利用 LangChain 构建对话式 AI 应用
人工智能·microsoft·langchain
编码浪子6 天前
进军AI大模型-Langchain程序部署
linux·python·langchain
耿子6669 天前
大模型 LangChain 开发框架-初探
langchain·大模型·embedding
曼城周杰伦9 天前
自然语言处理:第八十三章 Prompt格式到底多重要?
人工智能·gpt·自然语言处理·langchain·nlp·prompt·easyui