本文中使用 \(\cap\) 表示按位与,用 \(\cup\) 表示按位或
Part 1. 与/或 卷积
First. 问题引入
给定长度为 \(2^n\) 的数列 \(A,B\),求 \(C_i = \sum_{j \cup k = i} A_j \times B_k\)
显然有 \(O(4^n)\) 的暴力
Second. 变换
这一部分可以参考 快速莫比乌斯变换中的 Zeta 变换 ,即定义 \(\hat A_i\) 为序列 \(A\) 中 \(i\) 的子集和
Third. 快速变换
考虑分治
对于长度为 \(2^n\) 的待求解的 \(\hat A\),我们把它分成独立的两部分,即 \([0,2^{n-1})\) 和 \([2^{n-1},2^n)\) 两个区间分别求解
然后考虑这两个区间之间的贡献,发现只有 \([0,2^{n-1})\) 对 \([2^{n-1},2^n)\) 有贡献,于是对于 \(i \in [0,2^{n-1})\),将 \(\hat A_{i}\) 加到 \(\hat A_{i+2^{n-1}}\) 中即可
时间复杂度 \(O(n 2^n)\)
Fourth. 逆变换
我们只需要对照正变换中的操作步骤,一步一步撤销变换即可
即对于 \(i \in [0,2^{n-1})\),将 \(\hat A_{i+2^{n-1}}\) 减去 \(\hat A_{i}\) 的贡献,然后再递归地求解
当然还有另外的做法,即我们要将长度为 \(2^n\) 的 \(\hat A_i\) 在全集为 \(2^n-1\) 的情况下(即不考虑目前的长度外的子集)只包括自己的 \(A_i\),那么我们递归地求解完左右两个区间后,肯定有 \(\forall i\in [0,2^{n-1}),\hat A_{i+2^{n-1}}=\hat A_i+A_{i+2^{n-1}}\),因此减去贡献即可
in brief,可以先递归再减贡献,这样逆变换与正变换只有一个 +/-
的变化
Fifth. 推广
对于 \(\cap\) 的情况,与 \(\cup\) 十分相似,请读者尽量自己构造变换,推一下式子,可以加深理解
如果没有思路,here
Part 2. 异或 卷积
First. 问题引入
给定长度为 \(2^n\) 的数列 \(A,B\),求 \(C_i = \sum_{j \oplus k = i} A_j \times B_k\)
Second. 原理
设 \(\operatorname{popcnt}(i)\) 表示 \(i\) 在二进制下 1
的个数,则有
\[\operatorname{popcnt}(i \cap k) + \operatorname{popcnt}(j \cap k) \equiv \operatorname{popcnt}((i\oplus j)\cap k) \pmod 2 \]
证明:显然 \(k\) 为 \(0\) 的位上,\(i,j\) 的取值不影响结果,那么设 \(i'=i\cap k,j'=j\cap k\),那么问题转化为
\[\operatorname{popcnt}(i') + \operatorname{popcnt}(j') \equiv \operatorname{popcnt}(i'\oplus j') \pmod 2 \]
对于 \(i',j'\) 每一位分开讨论,原命题易证
即异或不会改变 \(1\) 的总数的奇偶性
Third. 变换
我们尝试构造一个变换
\[\hat A_i = \sum_j g(i,j) A_j \]
例如对于 \(\cup\) 卷积 ,\(g(i,j)=[i\cup j=i]\)
这个 \(g\) 函数满足以下性质:
\[\begin{align} & \because \hat C_i = \hat A_i \times \hat B_i \\ & \therefore \sum_{p} g(i,p)C_p = \sum_{j,k} g(i,j)\times g(i,k)\times A_j \times B_k \\ & \therefore \sum_{p} g(i,p) \sum_{j \oplus k = p} A_j \times B_k = \sum_{j,k} g(i,j)\times g(i,k)\times A_j \times B_k \\ & \therefore \sum_{j,k} g(i,j \oplus k) A_j \times B_k = \sum_{j,k} g(i,j)\times g(i,k)\times A_j \times B_k \end{align} \]
即我们要使得 \(g(i,j)\times g(i,k) = g(i,j \oplus k)\)
因为 \(\operatorname{popcnt}(i \cap k) + \operatorname{popcnt}(j \cap k) \equiv \operatorname{popcnt}((i\oplus j)\cap k) \pmod 2\),我们发现 \(g(i,j) = (-1)^{\operatorname{popcnt}(i \cap j)}\) 满足这个性质
\[\hat A_i = \sum_j (-1)^{\operatorname{popcnt}(i \cap j)} A_j \]
手动推一下式子:
\[\begin{align} \hat A_i \times \hat B_i & = \sum_j g(i,j)A_j \times \sum_k g(i,k) B_k\\ & = \sum_j (-1)^{\operatorname{popcnt}(i \cap j)} A_j \times \sum_k (-1)^{\operatorname{popcnt}(i \cap k)} B_k\\ & = \sum_{j,k} (-1)^{\operatorname{popcnt}(i \cap j) + \operatorname{popcnt}(i \cap k)} A_j \times B_k \\ & = \sum_{j,k} (-1)^{\operatorname{popcnt}(i \cap (j \oplus k))} C_{j \oplus k} \\ & = \sum_{p} (-1)^{\operatorname{popcnt}(i \cap p)} C_p \\ & = \sum_p g(i,p) C_p \\ & = \hat C_i \end{align} \]
Fourth. 快速变换
有点抽象,画个 \(n=3\) 的图来模拟一下
假设现在我们要考虑从 \(n=2\) 到 \(n=3\) 的变换,我们发现左边是 0??
,右边是 1??
,分别多出一个最高位
设原变换为 \(F_i\) ,目标变换为 \(G_i\)
-
左 \(\to\) 左
我们发现左边内部之间的 \(\cup\) 结果不变,因此 \(\forall i<4, G_i \gets F_i\)
-
左 \(\to\) 右 / 右 \(\to\) 左
我们发现
0??
\(\cup\)1??
=0??
,因此其1
的个数不变,因此 \(\forall i<4,G_i \gets F_{i+4}, G_{i+4} \gets F_i\)。 -
右 \(\to\) 右
我们发现之前是
??
\(\cup\)??
=??
,但是现在在前面加了一个1
,因此 \(-1\) 的指数加一,所以 \(\forall i<4,G_{i+4} \gets -F_{i+4}\)
综上,我们有 \(\forall i<4,G_i=F_i+F_{i+4}, G_{i+4}=F_i-F_{i+4}\)
generally,对于从 \(n-1\) 到 \(n\) 的变换,我们有
\[\forall i<2^{n-1}, G_i=F_i+F_{i+2^{n-1}}, G_{i+2^{n-1}}=F_i-F_{i+2^{n-1}} \]
时间复杂度 \(O(n2^n)\)。
Fifth. 逆变换
对照上面式子易得(留给读者思考)
Part 3. 模板题
核心代码如下
cpp
void fwtOr(ll *a,int n,int type) {
for(int i=1; i<(1<<n); i<<=1)
for(int j=0; j<(1<<n); j+=(i<<1))
for(int k=0; k<i; ++k)
(a[j+k+i]+=type*a[j+k])%=P;
}
void fwtAnd(ll *a,int n,int type) {
for(int i=1; i<(1<<n); i<<=1)
for(int j=0; j<(1<<n); j+=(i<<1))
for(int k=0; k<i; ++k)
(a[j+k]+=type*a[j+k+i])%=P;
}
void fwtXor(ll *a,int n,int type) {
for(int i=1; i<(1<<n); i<<=1)
for(int j=0; j<(1<<n); j+=(i<<1))
for(int k=0; k<i; ++k) {
ll u=a[j+k],v=a[j+k+i];
a[j+k]=(u+v)%P;
a[j+k+i]=(u-v)%P;
if(type==-1) {
(a[j+k]*=Pi2)%=P;
(a[j+k+i]*=Pi2)%=P;
}
}
}