输入序列太长 gan CGAN

transformer序列长度大导致计算复杂度高

GAN

  1. 训练过程

第一阶段:固定「判别器D」,训练「生成器G」。使用一个性能不错的判别器,G不断生成"假数据",然后给这个D去判断。开始时候,G还很弱,所以很容易被判别出来。但随着训练不断进行,G技能不断提升,最终骗过了D。这个时候,D基本属于"瞎猜"的状态,判断是否为假数据的概率为50%。

第二阶段:固定「生成器G」,训练「判别器D」。当通过了第一阶段,继续训练G就没有意义了。这时候我们固定G,然后开始训练D。通过不断训练,D提高了自己的鉴别能力,最终他可以准确判断出假数据。

重复第一阶段、第二阶段。通过不断的循环,「生成器G」和「判别器D」的能力都越来越强。最终我们得到了一个效果非常好的「生成器G」,就可以用它来生成数据。

CGAN

CGAN的核心思想在于将额外的条件信息引入到原始GAN的架构中,使得生成器和判别器在训练过程中同时考虑条件变量。

相关推荐
IT古董2 小时前
【漫话机器学习系列】249.Word2Vec自然语言训练模型
机器学习·自然语言处理·word2vec
白光白光2 小时前
大语言模型训练的两个阶段
人工智能·机器学习·语言模型
BioRunYiXue3 小时前
一文了解氨基酸的分类、代谢和应用
人工智能·深度学习·算法·机器学习·分类·数据挖掘·代谢组学
IT古董4 小时前
【漫话机器学习系列】255.独立同分布(Independent and Identically Distributed,简称 IID)
人工智能·机器学习
fytianlan4 小时前
机器学习 day6 -线性回归练习
人工智能·机器学习·线性回归
Blossom.1186 小时前
低代码开发:开启软件开发的新篇章
人工智能·深度学习·安全·低代码·机器学习·计算机视觉·数据挖掘
安特尼6 小时前
招行数字金融挑战赛数据赛道赛题一
人工智能·python·机器学习·金融·数据分析
极小狐7 小时前
如何构建容器镜像并将其推送到极狐GitLab容器镜像库?
开发语言·数据库·机器学习·gitlab·ruby
正在走向自律7 小时前
从0到1:Python机器学习实战全攻略(8/10)
开发语言·python·机器学习
北温凉9 小时前
【学习笔记】机器学习(Machine Learning) | 第六章(2)| 过拟合问题
笔记·机器学习