科普:One-Class SVM和SVDDSVM(支持向量机)算法是用于解决二分类问题的,它在样本空间(高维空间)中找一个最优超平面,使得两类数据点中离超平面最近的点(称为支持向量)到超平面的距离最大。 对于极少数“坏样本”的二分类场景,我们可以换个思路:将所有样本视为一类(而不是二类),而将极少数“坏样本”视为这一类的异常。这样,用于二分类的SVM就可以改造为用于一分类的One-Class SVM和SVDD。 One-Class SVM(单类支持向量机)与SVDD(支持向量数据描述)是单类分类领域的两大核心算法,它们的目标均为通过仅使用目标类样