【论文阅读】Denoising Diffusion Probabilistic Models (DDPM)详细解析及公式推导使用扩散概率模型(一类受非平衡热力学启发的潜变量模型)展示了高质量的图像合成结果。作者最佳的结果是通过在加权变分界上进行训练获得的,该界是根据扩散概率模型与带朗之万动力学的去噪分数匹配之间的新型联系设计的,并且作者的模型自然地支持一种渐进式有损解压方案,这可以被解释为自回归解码的推广。在无条件 CIFAR10 数据集上,作者获得了 9.46 的 Inception 分数和 3.17 的最先进 FID 分数。在 256x256 的 LSUN 数据集上,作者获得了与 ProgressiveGAN 相似的样本质