迁移学习基础知识——总体思路和度量准则(距离和相似度)Hi,大家好,我是半亩花海。在上节说明了迁移学习领域的一些基本知识,那么对迁移学习的问题进行简单的形式化之后,本文主要将介绍迁移学习的总体思路和常用度量准则(这里先说明距离和相似度)。核心思路是寻找源领域与目标领域的相似性(不变量)并加以利用。常用的距离度量包括欧氏距离、闵可夫斯基距离和马氏距离;相似度度量则涵盖余弦相似度、互信息、皮尔逊相关系数和Jaccard相关系数。这些度量方法对设计迁移学习算法至关重要,旨在定量评估领域相似性并指导学习过程优化。