7 人赚 960 亿美元,数字天才的首次独舞

巴菲特股东大会

一年一度的巴菲特股东大会如常召开,只不过这次坐在老爷子左手边的不再是老搭档查理芒格,而是钦点的未来继任者,格雷格·阿贝尔。

随着芒格(99岁)的离开,巴菲特(93岁)也曾直言自己已进入加时赛,目前管理巨额资产的核心人数,也从 7 人也变成了 6 位。

去年伯克希尔盈利 962 亿美元,和苹果的 969 亿利润相当。

在长达 5 个小时的大会上,老爷子回答了一些股东问题。

其中比较有意思的,是关于**「减持苹果」**的问题。

过去很长时间,苹果一直是伯克希尔的第一重仓。

哪怕现在减持了 13%,也仍是第一重仓。

老爷子的回答是认为美国未来会加税,想趁着加税之前降低仓位。

这其实没有说服力,更像是一个敷衍式的回答。

我们都知道巴菲特和芒格都是强调「价值投资」为核心的大师,他们那些经典案例,无不是穿越牛熊。

即使巴菲特有特别的数据或信息来源,也不会是因为单纯的税收政策,因为这变动不足以让伯克希尔卖掉 1000 万股苹果,更何况苹果还是著名的避税公司。

所以,哪怕是巴菲特,不要光听他说什么,要看他做什么。

老爷子在疫情前期还抄底了航空股,高调宣布长期看好航空,结果 2 个月后清仓式的割肉止损呢。

投资者(赌徒)们最喜欢做的事情,就是先射箭后画靶。

减持苹果,归根到底,还是**「信心下降」**。

盲猜老爷子对苹果信心下降是因为「苹果是美国科技公司中的亲中派」、「苹果过去几年缺乏创新,在 AI 等领域落后,重金押注的 AR/VR 领域目前不合预期」、「败诉欧盟,iOS 开放侧载,护城河被撕开口子」等多件事情的叠加。

如果再叠加「此前巴菲特清仓台积电,并公开表示,是因为对地缘形势的担心」的话,或许是中美关系的未来走向,才是主导减持的核心原因。

...

回归主线。

来一道「国内大厂」常考的数据结构题。

题目描述

平台:LeetCode

题号:1670

请你设计一个队列,支持在前,中,后三个位置的 pushpop 操作。

请你完成 FrontMiddleBack 类:

  • FrontMiddleBack() 初始化队列。
  • void pushFront(int val)val 添加到队列的 最前面 。
  • void pushMiddle(int val)val 添加到队列的 正中间 。
  • void pushBack(int val)val 添加到队里的 最后面 。
  • int popFront() 将最前面的元素从队列中删除并返回值,如果删除之前队列为空,那么返回 -1
  • int popMiddle() 将正中间的元素从队列中删除并返回值,如果删除之前队列为空,那么返回 -1
  • int popBack() 将 最后面 的元素从队列中删除并返回值,如果删除之前队列为空,那么返回 -1

请注意当有 两个 中间位置的时候,选择靠前面的位置进行操作。比方说:

  • 6 添加到 [1, 2, 3, 4, 5] 的中间位置,结果数组为 [1, 2, 6, 3, 4, 5]
  • [1, 2, 3, 4, 5, 6] 的中间位置弹出元素,返回 3,数组变为 [1, 2, 4, 5, 6]

示例 1:

输入:
["FrontMiddleBackQueue", "pushFront", "pushBack", "pushMiddle", "pushMiddle", "popFront", "popMiddle", "popMiddle", "popBack", "popFront"]
[[], [1], [2], [3], [4], [], [], [], [], []]

输出:
[null, null, null, null, null, 1, 3, 4, 2, -1]

解释:
FrontMiddleBackQueue q = new FrontMiddleBackQueue();
q.pushFront(1);   // [1]
q.pushBack(2);    // [1, 2]
q.pushMiddle(3);  // [1, 3, 2]
q.pushMiddle(4);  // [1, 4, 3, 2]
q.popFront();     // 返回 1 -> [4, 3, 2]
q.popMiddle();    // 返回 3 -> [4, 2]
q.popMiddle();    // 返回 4 -> [2]
q.popBack();      // 返回 2 -> []
q.popFront();     // 返回 -1 -> [] (队列为空)

提示:

  • 最多调用 次 pushFrontpushMiddlepushBackpopFrontpopMiddlepopBack

双端队列

只要求在头部或尾部高效插入/弹出元素的话,容易联想到双端队列。

还需要考虑往中间插入/弹出元素的话,会想到使用两个双端队列。

将两个双端队列分别称为 lr,把 lr 拼接起来就是完整元素列表:

由于双端队列本身支持 首尾操作,问题的关键在于如何确保涉及 Middle 操作的高效性。

我们可以设计一个 update 方法,用于确保两队列的相对平衡:

  • 当元素总个数为偶数时,确保两队列元素相等
  • 当元素总个数为奇数时,确保 r 队列比 l 队列元素多一个

如此一来,当我们需要往 Middle 插入元素时,始终往 l 的尾部插入即可;而当需要读取 Middle 位置元素时,根据两队列的元素个数关系决定是从 l 的尾部还是从 r 的头部取元素。

以下是对上述代码中几个操作的简短实现说明:

  • pushFront:将元素添加到 l 队列的头部,调用 update 保持队列平衡
  • pushMiddle:将元素添加到 l 队列的尾部,调用 update 保持队列平衡
  • pushBack:将元素添加到 r 队列的尾部,调用 update 保持队列平衡
  • popFront:若 l 队列不为空,从 l 队列的头部弹出一个元素;否则,从 r 队列的头部弹出一个元素(当且仅当元素个数为 时,队列 l 为空,唯一元素在队列 r 中),调用 update 保持队列平衡
  • popMiddle:若 l 队列和 r 队列的大小相等,则从 l 队列的尾部弹出一个元素;否则,从 r 队列的头部弹出一个元素。调用 update 保持队列平衡
  • popBack:从 r 队列的尾部弹出一个元素,调用 update 保持队列平衡

双端队列的实现,可通过「数组 + 首尾坐标指针」来实现。为方便大家理清脉络,先使用语言自带的 Deque 实现一版。

Java 代码(Deque 版):

class FrontMiddleBackQueue {
    Deque<Integer> l = new ArrayDeque<>(1010), r = new ArrayDeque<>(1010);
    public void pushFront(int val) {
        l.addFirst(val);
        update();
    }
    public void pushMiddle(int val) {
        l.addLast(val);
        update();
    }
    public void pushBack(int val) {
        r.addLast(val);
        update();
    }
    public int popFront() {
        if (l.size() + r.size() == 0) return -1;
        int ans = l.size() != 0 ? l.pollFirst() : r.pollFirst();
        update();
        return ans;
    }
    public int popMiddle() {
        if (l.size() + r.size() == 0) return -1;
        int ans = l.size() == r.size() ? l.pollLast() : r.pollFirst();
        update();
        return ans;
    }
    public int popBack() {
        if (l.size() + r.size() == 0) return -1;
        int ans = r.pollLast();
        update();
        return ans;
    }
    void update() {
        while (l.size() > r.size()) r.addFirst(l.pollLast());
        while (r.size() - l.size() > 1) l.addLast(r.pollFirst());
    }
}

看过 Deque 实现版本,考虑如何使用数组实现。

各类操作的总调用次数最多为 次,我们可创建大小为 的数组,并从下标 (接近中间位置)开始进行存储,这样无论是从前还是往后存数都不会越界。

使用 lhelta 代表队列 l 的头部和尾部坐标,使用 rherta 代表队列 r 的头部和尾部坐标,所有坐标初始值均为 。

需要注意的是,ta(无论是 lta 还是 rta)是严格指向尾部,因此如果要往尾部插数的话,需要先对指针自增(移到下一个空闲位置),再赋值;而 he(无论是 lhe 还是 rhe)是指向实际队列头部的前一位置,需要先赋值再前移。当 he = ta 代表队列为空。

Java 代码(纯数组版):

class FrontMiddleBackQueue {
    int[] l = new int[2010], r = new int[2010];
    int lhe = 1010, lta = 1010, rhe = 1010, rta = 1010;
    public void pushFront(int val) {
        l[lhe--] = val;
        update();
    }
    public void pushMiddle(int val) {
        l[++lta] = val;
        update();
    }
    public void pushBack(int val) {
        r[++rta] = val;
        update();
    }
    public int popFront() {
        if (getSize(lhe, lta) == 0 && getSize(rhe, rta) == 0) return -1;
        int ans = getSize(lhe, lta) != 0 ? l[++lhe] : r[++rhe];
        update();
        return ans;
    }
    public int popMiddle() {
        if (getSize(lhe, lta) + getSize(rhe, rta) == 0) return -1;
        int ans = getSize(lhe, lta) == getSize(rhe, rta) ? l[lta--] : r[++rhe];
        update();
        return ans;
    }
    public int popBack() {
        if (getSize(lhe, lta) == 0 && getSize(rhe, rta) == 0) return -1;
        int ans = r[rta--];
        update();
        return ans;
    }
    int getSize(int he, int ta) {
        return ta - he;
    }
    void update() {
        while (getSize(lhe, lta) > getSize(rhe, rta)) r[rhe--] = l[lta--];
        while (getSize(rhe, rta) - getSize(lhe, lta) > 1) l[++lta] = r[++rhe];
    }
}

C++ 代码:

class FrontMiddleBackQueue {
public:
    int l[2010], r[2010], lhe = 1010, lta = 1010, rhe = 1010, rta = 1010;
    void pushFront(int val) {
        l[lhe--] = val;
        update();
    }
    void pushMiddle(int val) {
        l[++lta] = val;
        update();
    }
    void pushBack(int val) {
        r[++rta] = val;
        update();
    }
    int popFront() {
        if (getSize(lhe, lta) == 0 && getSize(rhe, rta) == 0) return -1;
        int ans = getSize(lhe, lta) != 0 ? l[++lhe] : r[++rhe];
        update();
        return ans;
    }
    int popMiddle() {
        if (getSize(lhe, lta) == 0 && getSize(rhe, rta) == 0) return -1;
        int ans = getSize(lhe, lta) == getSize(rhe, rta) ? l[lta--] : r[++rhe];
        update();
        return ans;
    }
    int popBack() {
        if (getSize(lhe, lta) == 0 && getSize(rhe, rta) == 0) return -1;
        int ans = r[rta--];
        update();
        return ans;
    }
    int getSize(int he, int ta) {
        return ta - he;
    }
    void update() {
        while (getSize(lhe, lta) > getSize(rhe, rta)) r[rhe--] = l[lta--];
        while (getSize(rhe, rta) - getSize(lhe, lta) > 1) l[++lta] = r[++rhe];
    }
};

Python 代码:

class FrontMiddleBackQueue:
    def __init__(self):
        self.l, self.r = [0] * 2010, [0] * 2010
        self.r = [0] * 2010
        self.lhe, self.lta, self.rhe, self.rta = 1010, 1010, 1010, 1010

    def pushFront(self, val: int) -> None:
        self.l[self.lhe] = val
        self.lhe -= 1
        self.update()

    def pushMiddle(self, val: int) -> None:
        self.lta += 1
        self.l[self.lta] = val
        self.update()

    def pushBack(self, val: int) -> None:
        self.rta += 1
        self.r[self.rta] = val
        self.update()

    def popFront(self) -> int:
        if self.getSize(self.lhe, self.lta) + self.getSize(self.rhe, self.rta) == 0:
            return -1
        if self.getSize(self.lhe, self.lta) != 0:
            self.lhe += 1
            ans = self.l[self.lhe]
        else:
            self.rhe += 1
            ans = self.r[self.rhe]
        self.update()
        return ans

    def popMiddle(self) -> int:
        if self.getSize(self.lhe, self.lta) + self.getSize(self.rhe, self.rta) == 0:
            return -1
        if self.getSize(self.lhe, self.lta) == self.getSize(self.rhe, self.rta):
            ans = self.l[self.lta]
            self.lta -= 1
        else:
            self.rhe += 1
            ans = self.r[self.rhe]
        self.update()
        return ans

    def popBack(self) -> int:
        if self.getSize(self.lhe, self.lta) + self.getSize(self.rhe, self.rta) == 0:
            return -1
        ans = self.r[self.rta]
        self.rta -= 1
        self.update()
        return ans

    def getSize(self, he: int, ta: int) -> int:
        return ta - he

    def update(self) -> None:
        while self.getSize(self.lhe, self.lta) > self.getSize(self.rhe, self.rta):
            self.r[self.rhe] = self.l[self.lta]
            self.rhe -= 1
            self.lta -= 1
        while self.getSize(self.rhe, self.rta) - self.getSize(self.lhe, self.lta) > 1:
            self.lta += 1
            self.rhe += 1
            self.l[self.lta] = self.r[self.rhe]

TypeScript 代码:

class FrontMiddleBackQueue {
    private l: number[];
    private r: number[];
    private lhe: number;
    private lta: number;
    private rhe: number;
    private rta: number;
    constructor() {
        this.l = Array(2010).fill(0), this.r = Array(2010).fill(0);
        this.lhe = 1010, this.lta = 1010, this.rhe = 1010, this.rta = 1010;
    }
    pushFront(val: number): void {
        this.l[this.lhe--] = val;
        this.update();
    }
    pushMiddle(val: number): void {
        this.l[++this.lta] = val;
        this.update();
    }
    pushBack(val: number): void {
        this.r[++this.rta] = val;
        this.update();
    }
    popFront(): number {
        if (this.getSize(this.lhe, this.lta) + this.getSize(this.rhe, this.rta) == 0) return -1;
        const ans = this.getSize(this.lhe, this.lta) != 0 ? this.l[++this.lhe] : this.r[++this.rhe];
        this.update();
        return ans;
    }
    popMiddle(): number {
        if (this.getSize(this.lhe, this.lta) + this.getSize(this.rhe, this.rta) == 0) return -1;
        const ans = this.getSize(this.lhe, this.lta) == this.getSize(this.rhe, this.rta) ? this.l[this.lta--] : this.r[++this.rhe];
        this.update();
        return ans;
    }
    popBack(): number {
        if (this.getSize(this.lhe, this.lta) + this.getSize(this.rhe, this.rta) == 0) return -1;
        const ans = this.r[this.rta--];
        this.update();
        return ans;
    }
    private getSize(he: number, ta: number): number {
        return ta - he;
    }
    private update(): void {
        while (this.getSize(this.lhe, this.lta) > this.getSize(this.rhe, this.rta)) this.r[this.rhe--] = this.l[this.lta--];
        while (this.getSize(this.rhe, this.rta) - this.getSize(this.lhe, this.lta) > 1) this.l[++this.lta] = this.r[++this.rhe];
    }
}
  • 时间复杂度:所有操作复杂度均为
  • 空间复杂度:

进阶

更进一步,使用双向链表并与实现 update 类似效果,维护 Middle 位置的元素节点,同样可实现 各项操作,你能完成吗?

与纯数组版相比,使用链表好处在于可严格按需创建。

class Node {
    Node prev, next;
    int val;
    Node (int _val) {
        val = _val;
    }
}
class FrontMiddleBackQueue {
    Node he, ta, mid;
    int lsz, rsz;
    public FrontMiddleBackQueue() {
        he = new Node(-1); ta = new Node(-1);
        he.next = ta; ta.prev = he;
        mid = ta;
        lsz = rsz = 0;
    }
    public void pushFront(int val) {
        Node cur = new Node(val);
        cur.next = he.next;
        cur.prev = he;
        he.next.prev = cur;
        he.next = cur;
        lsz++;
        update();
    }
    public void pushMiddle(int val) {
        Node cur = new Node(val);
        cur.next = mid;
        cur.prev = mid.prev;
        mid.prev.next = cur;
        mid.prev = cur;
        lsz++;
        update();
    }
    public void pushBack(int val) {
        Node cur = new Node(val);
        cur.next = ta;
        cur.prev = ta.prev;
        ta.prev.next = cur;
        ta.prev = cur;
        rsz++;
        update();
    }
    public int popFront() {
        if (lsz + rsz == 0) return -1;
        int ans = he.next.val;
        he.next.next.prev = he;
        he.next = he.next.next;
        lsz--;
        update();
        return ans;
    }
    public int popMiddle() {
        if (lsz + rsz == 0) return -1;
        Node realMid = null;
        if (lsz == rsz) {
            realMid = mid.prev;
            lsz--;
        } else {
            realMid = mid;
            mid = mid.next;
            rsz--;
        }
        int ans = realMid.val;
        realMid.prev.next = realMid.next;
        realMid.next.prev = realMid.prev;
        realMid = realMid.next;
        update();
        return ans;
    }
    public int popBack() {
        if (lsz + rsz == 0) return -1;
        int ans = ta.prev.val;
        ta.prev.prev.next = ta;
        ta.prev = ta.prev.prev;
        rsz--;
        update();
        return ans;
    }
    void update() {
        while (lsz > rsz) {
            mid = mid.prev;
            lsz--; rsz++;
        }
        while (rsz - lsz > 1) {
            mid = mid.next;
            lsz++; rsz--;
        }
        if (lsz + rsz == 1) mid = ta.prev;
        if (lsz + rsz == 0) mid = ta;
    }
}

最后

给大伙通知一下 📢 :

全网最低价 LeetCode 会员目前仍可用 ~

📅 年度会员:有效期加赠两个月!! ; 季度会员:有效期加赠两周!!

🧧 年度会员:获 66.66 现金红包!! ; 季度会员:获 22.22 现金红包!!

🎁 年度会员:参与当月丰厚专属实物抽奖(中奖率 > 30%)!!

专属链接:leetcode.cn/premium/?promoChannel=acoier

我是宫水三叶,每天都会分享算法知识,并和大家聊聊近期的所见所闻。

欢迎关注,明天见。

更多更全更热门的「笔试/面试」相关资料可访问排版精美的 合集新基地 🎉🎉

相关推荐
YMWM_1 分钟前
第一章 Go语言简介
开发语言·后端·golang
码蜂窝编程官方18 分钟前
【含开题报告+文档+PPT+源码】基于SpringBoot+Vue的虎鲸旅游攻略网的设计与实现
java·vue.js·spring boot·后端·spring·旅游
hummhumm36 分钟前
第 25 章 - Golang 项目结构
java·开发语言·前端·后端·python·elasticsearch·golang
J老熊1 小时前
JavaFX:简介、使用场景、常见问题及对比其他框架分析
java·开发语言·后端·面试·系统架构·软件工程
AuroraI'ncoding1 小时前
时间请求参数、响应
java·后端·spring
好奇的菜鸟1 小时前
Go语言中的引用类型:指针与传递机制
开发语言·后端·golang
Alive~o.01 小时前
Go语言进阶&依赖管理
开发语言·后端·golang
许苑向上1 小时前
Dubbo集成SpringBoot实现远程服务调用
spring boot·后端·dubbo
郑祎亦2 小时前
Spring Boot 项目 myblog 整理
spring boot·后端·java-ee·maven·mybatis
本当迷ya2 小时前
💖2025年不会Stream流被同事排挤了┭┮﹏┭┮(强烈建议实操)
后端·程序员