格式转化——Labelme标注好的json文件批量转为png(标签)文件(物体为红色,背景为黑色)和jpg原图

作用如题目,批量将标注好的json文件转成png标签,jpg原图,其中标签时红黑图。

代码如下:

python 复制代码
import argparse
import base64
import json
import os
import os.path as osp
import imgviz
import PIL.Image
import yaml
from labelme.logger import logger
from labelme import utils
 
'''single json file'''
def main():
    logger.warning(
        "This script is aimed to demonstrate how to convert the "
        "JSON file to a single image dataset."
    )
    logger.warning(
        "It won't handle multiple JSON files to generate a "
        "real-use dataset."
    )
 
    parser = argparse.ArgumentParser()
    #parser.add_argument("json_file")
    parser.add_argument('--jsonfiles', nargs='?', const=True, default="datasets//before", help='resume most recent training') #设置输入路径  将default里面的路径转成json文件下的路径
    parser.add_argument("-o", "--out", default="datasets//png")  #设置输出路径 default里面的路径改为要存放标签png和原图jpg的路径
    args = parser.parse_args()
    import glob
    jsonfiles = glob.glob(args.jsonfiles+"/*.json")
    print(jsonfiles)
    for json_file in jsonfiles:
        if args.out is None:
            out_dir = osp.basename(json_file).replace(".", "_")
            out_dir = osp.join(osp.dirname(json_file), out_dir)
        else:
            out_dir = args.out
        if not osp.exists(out_dir):
            os.mkdir(out_dir)
 
        data = json.load(open(json_file))
        imageData = data.get("imageData")
 
        if not imageData:
            imagePath = os.path.join(os.path.dirname(json_file), data["imagePath"])
            with open(imagePath, "rb") as f:
                imageData = f.read()
                imageData = base64.b64encode(imageData).decode("utf-8")
        img = utils.img_b64_to_arr(imageData)
 
        label_name_to_value = {"_background_": 0}
        for shape in sorted(data["shapes"], key=lambda x: x["label"]):
            label_name = shape["label"]
            if label_name in label_name_to_value:
                label_value = label_name_to_value[label_name]
            else:
                label_value = len(label_name_to_value)
                label_name_to_value[label_name] = label_value
        lbl, _ = utils.shapes_to_label(
            img.shape, data["shapes"], label_name_to_value
        )
 
        label_names = [None] * (max(label_name_to_value.values()) + 1)
        for name, value in label_name_to_value.items():
            label_names[value] = name
 
        lbl_viz = imgviz.label2rgb(
            label=lbl, image=imgviz.asgray(img), label_names=label_names, loc="rb"
        )
 
        label_name  = json_file.split('\\')[-1].replace('.json','.png')
        image_name  = json_file.split('\\')[-1].replace('.json','.jpg')
        PIL.Image.fromarray(img).save(osp.join(out_dir, image_name))
        utils.lblsave(osp.join(out_dir, label_name), lbl)
        PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, "label_viz.png"))
 
        with open(osp.join(out_dir, "label_names.txt"), "w") as f:
            for lbl_name in label_names:
                f.write(lbl_name + "\n")
 
        # 生成info.yaml文件
        # logger.warning('info.yaml is being replaced by label_names.txt')
        # info = dict(label_names=label_names)
        # with open(osp.join(out_dir, 'info.yaml'), 'w') as f:
        #     yaml.safe_dump(info, f, default_flow_style=False)
 
        logger.info("Saved to: {}".format(out_dir))
 
if __name__ == "__main__":
    main()
相关推荐
前端小白佬14 分钟前
【JS】防抖(debounce)和节流(throttle)
前端·面试
GIS之路16 分钟前
OpenLayers 从后端服务加载 GeoJSON 数据
前端
远方160919 分钟前
16-Oracle 23 ai-JSON-Relational Duality-知识准备
数据库·oracle·json
开始编程吧23 分钟前
【HarmonyOS5】仓颉编程:当多范式统一成为智能时代的「通用语言」
前端
PasserbyX33 分钟前
ES6 WeakMap 生效的证明: FinalizationRegistry
前端·javascript
努力学习的小刘36 分钟前
如何使用react-router实现动态路由
前端·javascript
PasserbyX36 分钟前
JS原型链
前端·javascript
curdcv_po36 分钟前
你知道Cookie的弊端吗?
前端
curdcv_po38 分钟前
前端CSS高频面试题详解
前端
Danta41 分钟前
从0开始学习three.js(1)😁
前端·javascript·three.js