使用Arrow管理数据

在之前的数据挖掘:是时候更新一下TCGA的数据了推文中,保存TCGA的数据就是使用Arrow格式,因为占空间小,读写速度快,多语言支持(我主要使用的3种语言都支持)

Format

https://arrow.apache.org

Apache Arrow defines a language-independent columnar memory format for flat and hierarchical data, organized for efficient analytic operations on modern hardware like CPUs and GPUs. The Arrow memory format also supports zero-copy reads for lightning-fast data access without serialization overhead.

Language Supported

Arrow's libraries implement the format and provide building blocks for a range of use cases, including high performance analytics. Many popular projects use Arrow to ship columnar data efficiently or as the basis for analytic engines.

Libraries are available for C, C++, C#, Go, Java, JavaScript, Julia, MATLAB, Python, R, Ruby, and Rust.

Ecosystem

Apache Arrow is software created by and for the developer community. We are dedicated to open, kind communication and consensus decisionmaking. Our committers come from a range of organizations and backgrounds, and we welcome all to participate with us.

R

install.packages("arrow")

library(arrow)

write iris to iris.arrow and compressed by zstd

arrow::write_ipc_file(iris,'iris.arrow', compression = "zstd",compression_level=1)

read iris.arrow as DataFrame

iris=arrow::read_ipc_file('iris.arrow')

python

conda install -y pandas pyarrow

import pandas as pd

read iris.arrow as DataFrame

iris=pd.read_feather('iris.arrow')

write iris to iris.arrow and compressed by zstd

iris.to_feather('iris.arrow',compression='zstd', compression_level=1)

Julia

using Pkg

Pkg.add(["Arrow","DataFrames"])

using Arrow, DataFrames

read iris.arrow as DataFrame

iris = Arrow.Table("iris.arrow") |> DataFrame

write iris to iris.arrow, using 8 threads and compressed by zstd

Arrow.write("iris.arrow",iris,compress=:zstd,ntasks=8)

相关推荐
得物技术2 小时前
MySQL单表为何别超2000万行?揭秘B+树与16KB页的生死博弈|得物技术
数据库·后端·mysql
可涵不会debug6 小时前
【IoTDB】时序数据库选型指南:工业大数据场景下的技术突围
数据库·时序数据库
ByteBlossom6 小时前
MySQL 面试场景题之如何处理 BLOB 和CLOB 数据类型?
数据库·mysql·面试
麦兜*6 小时前
MongoDB Atlas 云数据库实战:从零搭建全球多节点集群
java·数据库·spring boot·mongodb·spring·spring cloud
Slaughter信仰6 小时前
深入理解Java虚拟机:JVM高级特性与最佳实践(第3版)第十章知识点问答(10题)
java·jvm·数据库
麦兜*6 小时前
MongoDB 在物联网(IoT)中的应用:海量时序数据处理方案
java·数据库·spring boot·物联网·mongodb·spring
-Xie-7 小时前
Mysql杂志(十六)——缓存池
数据库·mysql·缓存
七夜zippoe7 小时前
缓存与数据库一致性实战手册:从故障修复到架构演进
数据库·缓存·架构
一个天蝎座 白勺 程序猿7 小时前
Apache IoTDB(5):深度解析时序数据库 IoTDB 在 AINode 模式单机和集群的部署与实践
数据库·apache·时序数据库·iotdb·ainode