深入了解diffusion model

diffusion model是如何运作的

会输入当时noise的严重程度,根据我们的输入来确定在第几个step,并做出不同的回应。

Denoise模组内部实际做的事情

产生一张图片和产生noise难度是不一样的,若denoise 模块产生一只带噪声的猫说明这个模块已经会画一只猫,所以产生一只带噪声的猫和产生图片中死亡噪声难度是不一样的

如何训练noise predictor

输入这张图片和step id 然后产生出一个预测中的噪声,但为了产生预测中的噪声,则需要输入这张图片的噪声是什么样子,才会学习如何把噪声输出。

noise predictor 的训练资料是人们创造出来的

Text-to-Image

Stable Diffusion

内部有三个元件

1、Text Encoder:好的文字的encoder,会把一段文字变成向量

2、Generation Model:可以用其他model(如diffusion Model),用一个粉红色的矩阵表示以恶搞噪声,将噪声与文字的encode产生一个中间产物(为一张图片被压缩后的结果)

3、Decoder:把图片压缩后的版本还原成原图

第一元件:如何评估影像生成的模型好坏(常用FID Frechet Inception Distance)

若这两组越接近,则表示生成的影像与原图更接近。

FID需要许多的图片

第三元件:它训练不需要文字的输入,可任意单凭影像的输入自动训练decoder

中间产物为:压缩后的图片

中间产物为:Latent Representation ,则应该如何训练decoder,把其还原成图片

需要训练一个Auto-encoder ,过程如下图所示:

输入和输出的结果越接近越好。把训练好的decoder直接拿出来将Latent Representation还原成图片即可。

第二元件:generation model

diffusion model的数学原理

Training

第三行表示从1-T sample一个数出来, 第四行表示从normal distribution sample一个

第五行红色方框表示T越大表示所加的噪声越多

想象中噪声是一点一点加进去的, 去噪声也是把噪声一点一点的抹去,实际上真正做的事情并没有把噪声一点一点的加进去,噪声一次加入,去噪声也是一次便去除

sampling

相关推荐
咚咚王者2 分钟前
人工智能之数据分析 numpy:第十二章 数据持久化
人工智能·数据分析·numpy
沛沛老爹7 分钟前
AI应用入门之LangChain中SerpAPI、LLM-Math等Tools的集成方法实践
人工智能·langchain·llm·ai入门·serpapi
roman_日积跬步-终至千里34 分钟前
【强化学习基础(5)】策略搜索与学徒学习:从专家行为中学习加速学习过程
人工智能
杭州泽沃电子科技有限公司2 小时前
在线监测:为医药精细化工奠定安全、合规与质量基石
运维·人工智能·物联网·安全·智能监测
GIS数据转换器2 小时前
GIS+大模型助力安全风险精细化管理
大数据·网络·人工智能·安全·无人机
OJAC1113 小时前
AI跨界潮:金融精英与应届生正涌入人工智能领域
人工智能·金融
机器之心3 小时前
Adam的稳+Muon的快?华为诺亚开源ROOT破解大模型训练「既要又要」的两难困境
人工智能·openai
可观测性用观测云3 小时前
观测云 MCP Server 接入和使用最佳实践
人工智能
掘金一周3 小时前
大部分人都错了!这才是chrome插件多脚本通信的正确姿势 | 掘金一周 11.27
前端·人工智能·后端
xier_ran3 小时前
深度学习:生成对抗网络(GAN)详解
人工智能·深度学习·机器学习·gan