深入了解diffusion model

diffusion model是如何运作的

会输入当时noise的严重程度,根据我们的输入来确定在第几个step,并做出不同的回应。

Denoise模组内部实际做的事情

产生一张图片和产生noise难度是不一样的,若denoise 模块产生一只带噪声的猫说明这个模块已经会画一只猫,所以产生一只带噪声的猫和产生图片中死亡噪声难度是不一样的

如何训练noise predictor

输入这张图片和step id 然后产生出一个预测中的噪声,但为了产生预测中的噪声,则需要输入这张图片的噪声是什么样子,才会学习如何把噪声输出。

noise predictor 的训练资料是人们创造出来的

Text-to-Image

Stable Diffusion

内部有三个元件

1、Text Encoder:好的文字的encoder,会把一段文字变成向量

2、Generation Model:可以用其他model(如diffusion Model),用一个粉红色的矩阵表示以恶搞噪声,将噪声与文字的encode产生一个中间产物(为一张图片被压缩后的结果)

3、Decoder:把图片压缩后的版本还原成原图

第一元件:如何评估影像生成的模型好坏(常用FID Frechet Inception Distance)

若这两组越接近,则表示生成的影像与原图更接近。

FID需要许多的图片

第三元件:它训练不需要文字的输入,可任意单凭影像的输入自动训练decoder

中间产物为:压缩后的图片

中间产物为:Latent Representation ,则应该如何训练decoder,把其还原成图片

需要训练一个Auto-encoder ,过程如下图所示:

输入和输出的结果越接近越好。把训练好的decoder直接拿出来将Latent Representation还原成图片即可。

第二元件:generation model

diffusion model的数学原理

Training

第三行表示从1-T sample一个数出来, 第四行表示从normal distribution sample一个

第五行红色方框表示T越大表示所加的噪声越多

想象中噪声是一点一点加进去的, 去噪声也是把噪声一点一点的抹去,实际上真正做的事情并没有把噪声一点一点的加进去,噪声一次加入,去噪声也是一次便去除

sampling

相关推荐
PPT百科33 分钟前
创建实用PPT演讲者备注的有效方法
人工智能·经验分享·pdf·powerpoint·ppt
lilu88888884 小时前
AI代码生成器赋能房地产:ScriptEcho如何革新VR/AR房产浏览体验
前端·人工智能·ar·vr
梦云澜4 小时前
论文阅读(五):乳腺癌中的高斯图模型和扩展网络推理
论文阅读·人工智能·深度学习·学习
危险、5 小时前
Spring Boot 无缝集成SpringAI的函数调用模块
人工智能·spring boot·函数调用·springai
深度学习实战训练营5 小时前
基于迁移学习的ResNet50模型实现石榴病害数据集多分类图片预测
人工智能·分类·迁移学习
XianxinMao5 小时前
开源AI模型发布策略:平衡开放与质量的艺术
人工智能
Fxrain6 小时前
[Computer Vision]实验二:图像特征点提取
人工智能·计算机视觉
人类群星闪耀时6 小时前
用深度学习优化供应链管理:让算法成为商业决策的引擎
人工智能·深度学习·算法
小树苗1937 小时前
全面了解 Web3 AIGC 和 AI Agent 的创新先锋 MelodAI
人工智能·web3·aigc
有Li7 小时前
基于先验领域知识的归纳式多实例多标签学习用于牙周病分类| 文献速递 -医学影像人工智能进展
人工智能·深度学习·文献