深入了解diffusion model

diffusion model是如何运作的

会输入当时noise的严重程度,根据我们的输入来确定在第几个step,并做出不同的回应。

Denoise模组内部实际做的事情

产生一张图片和产生noise难度是不一样的,若denoise 模块产生一只带噪声的猫说明这个模块已经会画一只猫,所以产生一只带噪声的猫和产生图片中死亡噪声难度是不一样的

如何训练noise predictor

输入这张图片和step id 然后产生出一个预测中的噪声,但为了产生预测中的噪声,则需要输入这张图片的噪声是什么样子,才会学习如何把噪声输出。

noise predictor 的训练资料是人们创造出来的

Text-to-Image

Stable Diffusion

内部有三个元件

1、Text Encoder:好的文字的encoder,会把一段文字变成向量

2、Generation Model:可以用其他model(如diffusion Model),用一个粉红色的矩阵表示以恶搞噪声,将噪声与文字的encode产生一个中间产物(为一张图片被压缩后的结果)

3、Decoder:把图片压缩后的版本还原成原图

第一元件:如何评估影像生成的模型好坏(常用FID Frechet Inception Distance)

若这两组越接近,则表示生成的影像与原图更接近。

FID需要许多的图片

第三元件:它训练不需要文字的输入,可任意单凭影像的输入自动训练decoder

中间产物为:压缩后的图片

中间产物为:Latent Representation ,则应该如何训练decoder,把其还原成图片

需要训练一个Auto-encoder ,过程如下图所示:

输入和输出的结果越接近越好。把训练好的decoder直接拿出来将Latent Representation还原成图片即可。

第二元件:generation model

diffusion model的数学原理

Training

第三行表示从1-T sample一个数出来, 第四行表示从normal distribution sample一个

第五行红色方框表示T越大表示所加的噪声越多

想象中噪声是一点一点加进去的, 去噪声也是把噪声一点一点的抹去,实际上真正做的事情并没有把噪声一点一点的加进去,噪声一次加入,去噪声也是一次便去除

sampling

相关推荐
爱看科技1 小时前
5G-A技术浪潮勾勒通信产业新局,微美全息加快以“5.5G+ AI”新势能深化场景应用
人工智能·5g
打马诗人3 小时前
【YOLO11】【DeepSort】【NCNN】使用YOLOv11和DeepSort进行行人目标跟踪。(基于ncnn框架,c++实现)
人工智能·算法·目标检测
倒悬于世3 小时前
基于千问2.5-VL-7B训练识别人的表情
人工智能
大哥喝阔落4 小时前
chatgpt plus简单得,不需要求人,不需要野卡,不需要合租,不需要昂贵的价格
人工智能·chatgpt
Godspeed Zhao4 小时前
自动驾驶中的传感器技术21——Camera(12)
人工智能·机器学习·自动驾驶·图像评测
hurrycry_小亦4 小时前
补:《每日AI-人工智能-编程日报》--2025年7月31日
人工智能
静心问道4 小时前
量化大型语言模型的评估
人工智能·语言模型·自然语言处理
gptplus5 小时前
AI + 云原生:正在引爆下一代应用的技术革命
人工智能·云原生
2401_831896035 小时前
机器学习(13):逻辑回归
人工智能·机器学习·逻辑回归
山烛6 小时前
决策树学习全解析:从理论到实战
人工智能·python·学习·算法·决策树·机器学习