CogVLM2多模态开源大模型部署与使用

CogVLM2多模态开源大模型部署与使用

项目简介

  • CogVLM2 是由清华大学团队发布的新一代开源模型系列。
  • 2024年5月24日,发布了Int4版本模型,只需16GB显存即可进行推理。
  • 2024年5月20日,发布了基于llama3-8b的CogVLM2,性能与GPT-4V相当或更优。

模型特点

  • 显著提升关键指标,如TextVQA, DocVQA。
  • 支持8K文本长度和1344*1344图像分辨率。
  • 提供中英文双语模型版本。

模型详细信息

  • 基座模型:Meta-Llama-3-8B-Instruct
  • 语言:英文和中英文双语
  • 模型大小:19B
  • 任务:图像理解,对话模型
  • 文本长度:8K
  • 图片分辨率:1344*1344

模型使用

最低配置要求

CogVlM2 Int4 型号需要 16G GPU 内存就可以运行,并且必须在具有 Nvidia GPU 的 Linux 上运行。

Model Name 19B Series Model Remarks
BF16 / FP16 Inference 42GB Tested with 2K dialogue text
Int4 Inference 16GB Tested with 2K dialogue text
BF16 Lora Tuning (Freeze Vision Expert Part) 57GB Training text length is 2K
BF16 Lora Tuning (With Vision Expert Part) > 80GB Single GPU cannot tune

部署步骤

模型下载
  • 这里从 huggingface 上下载模型
  • 如果使用AutoDL算力平台可以使用 source /etc/network_turbo 进行学术加速 , unset http_proxy && unset https_proxy 取消加速
shell 复制代码
# 创建文件夹
mkdir cogvlm2
# 按照huggingface_hub 工具下载模型
pip install -U huggingface_hub
# 下载模型到当前文件夹
huggingface-cli download THUDM/cogvlm2-llama3-chinese-chat-19B-int4 --local-dir .

# 也可以使用
git clone https://huggingface.co/THUDM/cogvlm2-llama3-chinese-chat-19B-int4
下载代码
shell 复制代码
git clone https://github.com/THUDM/CogVLM2
安装依赖

cd basic_demo

pip install -r requirements.txt

  • 如果安装出现依赖库冲突的错误,可以采用下面requirements.txt
shell 复制代码
xformers>=0.0.26.post1
#torch>=2.3.0
#torchvision>=0.18.0
transformers>=4.40.2
huggingface-hub>=0.23.0
pillow>=10.3.0
chainlit>=1.0.506
pydantic>=2.7.1
timm>=0.9.16
openai>=1.30.1
loguru>=0.7.2
pydantic>=2.7.1
einops>=0.7.0
sse-starlette>=2.1.0
bitsandbytes>=0.43.1
代码修改

vim web_demo.py

shell 复制代码
# 修改模型路径为本地路径
MODEL_PATH = '/root/autodl-tmp/cogvlm2/cogvlm2-llama3-chinese-chat-19B-int4'

启动WebDemo

shell 复制代码
chainlit run web_demo.py

访问

本地则访问 : http://localhost:8000

如果是AutoDL 使用ssh代理来访问 , 输入yes, 如何粘贴密码即可

shell 复制代码
ssh -CNg -L 8000:127.0.0.1:8000 root@connect.cqa1.xxxx.com -p 46671
  • 页面

效果

  • 成份表
  • 火车票

这里键的含义不对, int4 估计会有性能损失导致的

  • 盖了章的报价表

OpenAI API

使用 OpenAI API格式的方式请求和模型的对话。

shell 复制代码
python openai_api_demo.py

错误解决

解决办法 :

使用下面requirements.txt重新安装依赖

shell 复制代码
xformers>=0.0.26.post1
#torch>=2.3.0
#torchvision>=0.18.0
transformers>=4.40.2
huggingface-hub>=0.23.0
pillow>=10.3.0
chainlit>=1.0.506
pydantic>=2.7.1
timm>=0.9.16
openai>=1.30.1
loguru>=0.7.2
pydantic>=2.7.1
einops>=0.7.0
sse-starlette>=2.1.0
bitsandbytes>=0.43.1
相关推荐
中冕—霍格沃兹软件开发测试15 小时前
测试工具链的构建与团队协作:从工具集成到价值流动
人工智能·科技·测试工具·开源·appium·bug
HyperAI超神经16 小时前
活动回顾丨 北大/清华/Zilliz/MoonBit共话开源,覆盖视频生成/视觉理解/向量数据库/AI原生编程语言
人工智能·ai·开源·编程语言·向量数据库·视频生成·视觉理解
老兵发新帖17 小时前
AI驱动架构设计开源项目分析:next-ai-drawio
人工智能·开源·draw.io
济南壹软网络科技有限公司19 小时前
下一代盲盒系统核心架构解析:JAVA-S1如何打造极致公平与全球化体验
java·开源·盲盒源码·盲盒h5·国际盲盒源码
IT·小灰灰19 小时前
当AI开口说话:可灵视频2.6如何终结“默片时代“重塑视听共生
大数据·人工智能·python·深度学习·数据挖掘·开源·音视频
OpenAnolis小助手19 小时前
构建新计算范式下的开源生态,龙蜥技术生态分论坛回顾来了
开源·操作系统·龙蜥社区·openanolis
219920 小时前
Embabel:JVM上的AI Agent框架深度技术分析
java·jvm·人工智能·spring·ai·开源
说私域20 小时前
人口红利消退与疫情冲击下电商行业的转型路径探索——以开源链动2+1模式S2B2C商城小程序为例
小程序·开源
OpenAnolis小助手20 小时前
专访 | 深耕八载,双向赋能:阿里云与龙蜥的开源共生之路
开源·云计算·操作系统·龙蜥社区·openanolis
CoderJia程序员甲20 小时前
GitHub 热榜项目 - 日榜(2025-12-12)
ai·开源·大模型·github·ai教程