CogVLM2多模态开源大模型部署与使用

CogVLM2多模态开源大模型部署与使用

项目简介

  • CogVLM2 是由清华大学团队发布的新一代开源模型系列。
  • 2024年5月24日,发布了Int4版本模型,只需16GB显存即可进行推理。
  • 2024年5月20日,发布了基于llama3-8b的CogVLM2,性能与GPT-4V相当或更优。

模型特点

  • 显著提升关键指标,如TextVQA, DocVQA。
  • 支持8K文本长度和1344*1344图像分辨率。
  • 提供中英文双语模型版本。

模型详细信息

  • 基座模型:Meta-Llama-3-8B-Instruct
  • 语言:英文和中英文双语
  • 模型大小:19B
  • 任务:图像理解,对话模型
  • 文本长度:8K
  • 图片分辨率:1344*1344

模型使用

最低配置要求

CogVlM2 Int4 型号需要 16G GPU 内存就可以运行,并且必须在具有 Nvidia GPU 的 Linux 上运行。

Model Name 19B Series Model Remarks
BF16 / FP16 Inference 42GB Tested with 2K dialogue text
Int4 Inference 16GB Tested with 2K dialogue text
BF16 Lora Tuning (Freeze Vision Expert Part) 57GB Training text length is 2K
BF16 Lora Tuning (With Vision Expert Part) > 80GB Single GPU cannot tune

部署步骤

模型下载
  • 这里从 huggingface 上下载模型
  • 如果使用AutoDL算力平台可以使用 source /etc/network_turbo 进行学术加速 , unset http_proxy && unset https_proxy 取消加速
shell 复制代码
# 创建文件夹
mkdir cogvlm2
# 按照huggingface_hub 工具下载模型
pip install -U huggingface_hub
# 下载模型到当前文件夹
huggingface-cli download THUDM/cogvlm2-llama3-chinese-chat-19B-int4 --local-dir .

# 也可以使用
git clone https://huggingface.co/THUDM/cogvlm2-llama3-chinese-chat-19B-int4
下载代码
shell 复制代码
git clone https://github.com/THUDM/CogVLM2
安装依赖

cd basic_demo

pip install -r requirements.txt

  • 如果安装出现依赖库冲突的错误,可以采用下面requirements.txt
shell 复制代码
xformers>=0.0.26.post1
#torch>=2.3.0
#torchvision>=0.18.0
transformers>=4.40.2
huggingface-hub>=0.23.0
pillow>=10.3.0
chainlit>=1.0.506
pydantic>=2.7.1
timm>=0.9.16
openai>=1.30.1
loguru>=0.7.2
pydantic>=2.7.1
einops>=0.7.0
sse-starlette>=2.1.0
bitsandbytes>=0.43.1
代码修改

vim web_demo.py

shell 复制代码
# 修改模型路径为本地路径
MODEL_PATH = '/root/autodl-tmp/cogvlm2/cogvlm2-llama3-chinese-chat-19B-int4'

启动WebDemo

shell 复制代码
chainlit run web_demo.py

访问

本地则访问 : http://localhost:8000

如果是AutoDL 使用ssh代理来访问 , 输入yes, 如何粘贴密码即可

shell 复制代码
ssh -CNg -L 8000:127.0.0.1:8000 root@connect.cqa1.xxxx.com -p 46671
  • 页面

效果

  • 成份表
  • 火车票

这里键的含义不对, int4 估计会有性能损失导致的

  • 盖了章的报价表

OpenAI API

使用 OpenAI API格式的方式请求和模型的对话。

shell 复制代码
python openai_api_demo.py

错误解决

解决办法 :

使用下面requirements.txt重新安装依赖

shell 复制代码
xformers>=0.0.26.post1
#torch>=2.3.0
#torchvision>=0.18.0
transformers>=4.40.2
huggingface-hub>=0.23.0
pillow>=10.3.0
chainlit>=1.0.506
pydantic>=2.7.1
timm>=0.9.16
openai>=1.30.1
loguru>=0.7.2
pydantic>=2.7.1
einops>=0.7.0
sse-starlette>=2.1.0
bitsandbytes>=0.43.1
相关推荐
隐语SecretFlow16 小时前
开源隐私计算框架SecretFlow | 基于隐语的金融全链路场景介绍和应用实践
金融·开源
魔猴疯猿17 小时前
无人机地面站中不同的飞行模式具体含义释义(开源飞控常用的5种模式)
开源·无人机·mavlink·飞行模式
周杰伦_Jay19 小时前
【OpenManus深度解析】MetaGPT团队打造的开源AI智能体框架,打破Manus闭源壁垒。包括架构分层、关键技术特点等内容
人工智能·深度学习·opencv·架构·开源
算家计算20 小时前
DeepSeek-OCR本地部署教程:DeepSeek突破性开创上下文光学压缩,10倍效率重构文本处理范式
人工智能·开源·deepseek
RobinMin21 小时前
Droid CLI 试用体验
人工智能·开源
CloudWeGo21 小时前
CloudWeGo 技术沙龙暨四周年庆典活动回顾:高性能微服务技术实践与 AI 新范式
开源
阿里云云原生21 小时前
20 万奖金池就位!Higress AI 网关开发挑战赛参赛指南
微服务·开源
IT技术分享社区21 小时前
IT运维干货:lnav开源日志分析工具详解与CentOS实战部署
linux·运维·服务器·开源·centos
酷讯网络_2408701601 天前
PHP双轨直销企业会员管理系统/购物直推系统/支持人脉网络分销系统源码
学习·开源