java(kotlin)和 python 通过DoubleCloud的kafka进行线程间通信

进入

DoubleCloud

https://www.double.cloud

创建一个kafka

1 选择语言

2 运行curl 的url命令启动一个topic

3 生成对应语言的token

4 复制3中的配置文件到本地,命名为client.properties

5 复制客户端代码

对python和java客户端代码进行了重写,java改成了kotlin:

配置文件

# Required connection configs for Kafka producer, consumer, and admin
bootstrap.servers=
security.protocol=SASL_SSL
sasl.mechanisms=PLAIN
sasl.username=
sasl.password=
group.id=
auto.offset.reset=earliest
# Best practice for higher availability in librdkafka clients prior to 1.7
session.timeout.ms=45000

import time

from confluent_kafka import Producer, Consumer
import asyncio
import threading


class KafkaClient:
    def __init__(self, config_file):
        self.config = self.read_config(config_file)

    def read_config(self, config_file):
        config = {}
        with open(config_file) as fh:
            for line in fh:
                line = line.strip()
                if len(line) != 0 and line[0] != "#":
                    parameter, value = line.strip().split('=', 1)
                    config[parameter] = value.strip()
        return config

    def produce(self, topic, key, value):
        # Creates a new producer instance
        producer = Producer(self.config)

        # Produces a sample message
        producer.produce(topic, key=key, value=value)
        print(f"Produced message to topic {topic}: key = {key:12} value = {value:12}")

        # Send any outstanding or buffered messages to the Kafka broker
        producer.flush()

    def consume_async(self, topic, callback=None, group_id="python-group-1", auto_offset_reset="earliest"):
        # Sets the consumer group ID and offset
        self.config["group.id"] = group_id
        self.config["auto.offset.reset"] = auto_offset_reset
        consumer = Consumer(self.config)
        consumer.subscribe([topic])
        loop = asyncio.new_event_loop()
        asyncio.set_event_loop(loop)
        if callback is not None:
            loop.run_until_complete(callback(consumer))

    def consume(self, topic, callback=None):
        thread = threading.Thread(target=self.consume_async, args=(topic, callback,))
        thread.start()
        return thread


async def consume_async(consumer):
    try:
        while True:
            msg = consumer.poll(1.0)
            if msg is not None:
                break
        if not msg.error():
            key = msg.key().decode("utf-8")
            value = msg.value().decode("utf-8")
            print(f"Consumed message: key = {key:12} value = {value:12}")
    except KeyboardInterrupt:
        pass
    finally:
        consumer.close()


config_file_path = ".\\client.properties"
topic = "test"
key = "key"
value = "value"

kafka_client = KafkaClient(config_file_path)
kafka_client.produce(topic, key, value)
thread = kafka_client.consume(topic, consume_async)

配置文件

# Required connection configs for Kafka producer, consumer, and admin
bootstrap.servers=
security.protocol=SASL_SSL
sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginModule required username='GHFXZDIOMQW3IPKA' password='TimUk7hj/EwTiB031lA95LeKfXN3t2Ddnw+izhKx3+7wFxZKMLGEqTOnneTKrlQQ';
sasl.mechanism=PLAIN
# Required for correctness in Apache Kafka clients prior to 2.6
client.dns.lookup=use_all_dns_ips
key.serializer=org.apache.kafka.common.serialization.StringSerializer
value.serializer=org.apache.kafka.common.serialization.StringSerializer
# Best practice for higher availability in Apache Kafka clients prior to 3.0
session.timeout.ms=45000
topic=
group.id=
auto.offset.reset=earliest
key.deserializer=org.apache.kafka.common.serialization.StringDeserializer 
value.deserializer=org.apache.kafka.common.serialization.StringDeserializer 
# Best practice for Kafka producer to prevent data loss
acks=all

java(kotiln)

import kotlinx.coroutines.CoroutineScope
import kotlinx.coroutines.delay
import kotlinx.coroutines.launch
import kotlinx.coroutines.newFixedThreadPoolContext
import org.apache.kafka.clients.consumer.ConsumerRecords
import org.apache.kafka.clients.consumer.KafkaConsumer
import org.apache.kafka.clients.producer.KafkaProducer
import org.apache.kafka.clients.producer.ProducerRecord
import java.io.Closeable
import java.io.FileInputStream
import java.io.IOException
import java.nio.file.Files
import java.nio.file.Paths
import java.time.Duration
import java.util.*

class KafkaClient<T, V> : Closeable {
    private var producer: KafkaProducer<T, V>? = null
    private var fileConfig: Properties? = null
    val TOPIC = "topic"
    private val DURATION = 100L
    private val POOLSIZE = 10
    private val DISPATCHER = newFixedThreadPoolContext(POOLSIZE, "CoroutinePool")
    private val SCOPE = CoroutineScope(DISPATCHER)

    constructor(configPath: String? = null, config: Properties? = null) {
        if (config == null && configPath == null) throw Exception("don't have any config")
        var config1 = Properties()
        if (configPath != null) {
            fileConfig = readConfig(configPath)
            fileConfig?.let { config1.putAll(it) }
        }
        if (config != null) {
            config1.putAll(config)
        }
        producer = KafkaProducer(config1)
    }

    fun produce(key: T, value: V, topic: String? = null) {
        producer?.send(ProducerRecord(topic ?: (fileConfig?.getProperty(TOPIC) as String), key, value))
    }

    fun consume(func: suspend (ConsumerRecords<T, V>) -> Unit) {
        val consumer: KafkaConsumer<T, V> = KafkaConsumer(fileConfig)
        consumer.subscribe(Arrays.asList(fileConfig?.getProperty(TOPIC)))
        SCOPE.launch {
            while (true) {
                val records: ConsumerRecords<T, V> = consumer.poll(Duration.ofMillis(DURATION))
                func(records)
                delay(DURATION)
            }
        }
    }


    @Throws(IOException::class)
    fun readConfig(configFile: String): Properties {
        if (!Files.exists(Paths.get(configFile))) {
            throw IOException("$configFile not found.")
        }
        val config = Properties()
        FileInputStream(configFile).use { inputStream -> config.load(inputStream) }
        return config
    }

    override fun close() {
        producer?.close()
    }
}

fun main() {
    val cli =
        KafkaClient<String, String>("D:\\src\\main\\java\\com\\tr\\robot\\io\\kafka\\client.properties")
    cli.consume {
        println("test beg")
        for (record in it) {
            println(
                String.format(
                    "Consumed message from topic %s: key = %s value = %s", cli.TOPIC, record.key(), record.value()
                )
            )
        }
        println("test end")
    }

    // Give some time for the consumer to start
    Thread.sleep(2000)

    cli.produce("key1", "test")

    // Give some time for the consumer to consume the message
    Thread.sleep(5000)
}
相关推荐
橘猫云计算机设计几秒前
基于Django的购物商城平台的设计与实现(源码+lw+部署文档+讲解),源码可白嫖!
java·数据库·spring boot·后端·django
宇努力学习3 分钟前
如何本地部署seepseek
python·ai·ollama·deepseek
BUTCHER58 分钟前
Java 使用websocket
java
橙狮科技10 分钟前
使用 GPTQ 进行 4 位 LLM 量化
人工智能·python·语言模型
caihuayuan413 分钟前
PHP建立MySQL持久化连接(长连接)及mysql与mysqli扩展的区别
java·大数据·sql·spring
开开心心就好18 分钟前
娱乐使用,可以生成转账、图片、聊天等对话内容
windows·python·智能手机·软件工程·娱乐·软件需求
愚昧之山绝望之谷开悟之坡19 分钟前
ragflow-RAPTOR到底是什么?请通俗的解释!
python
背太阳的牧羊人26 分钟前
RAG检索中使用一个 长上下文重排序器(Long Context Reorder) 对检索到的文档进行进一步的处理和排序,优化输出顺序
开发语言·人工智能·python·langchain·rag
ITPUB-微风28 分钟前
美团MTSQL特性解析:技术深度与应用广度的完美结合
java·服务器·开发语言
007_rbq34 分钟前
XUnity.AutoTranslator-Gemini——调用Google的Gemini API, 实现Unity游戏中日文文本的自动翻译
人工智能·python·游戏·机器学习·unity·github·机器翻译