LlamaFactory-Ollama-Langchain大模型训练-部署一条龙

前言

近些日子,大模型火的一塌糊涂,那么现在就有义务要学习一套好用的、从 dataset --> train --> deploy 的一整套流程,好拿来装逼。话不多说,进入正题

Train 框架

目前好用的框架太多,如BELLE, ChatGLM等,今天笔者推荐一个 Llama-Factory.

环境安装

bash 复制代码
git clone https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
conda create -n llama_factory python=3.10
conda activate llama_factory
pip install -e .[torch,metrics]

没错,你没看错,就这么几步,环境就搞定了

Dataset

数据集是通用格式,如下:

yaml 复制代码
[
    {
    "instruction": "你好",
    "input": "",
    "output": "您好,我是XX大模型,一个由XXX开发的 AI 助手,很高兴认识您。请问我能为您做些什么?"
    },
    {
    "instruction": "你好",
    "input": "",
    "output": "您好,我是XX大模型,一个由XXX打造的人工智能助手,请问有什么可以帮助您的吗?"
    }
]

如果是text-to-text任务,可以instruction中写prompt,input 和 output 分别写text即可。

注:还有很多种数据格式,具体见项目的readme

自定义数据集制作好以后,放在项目的 data 下,然后在 data/dataset_info.json 文件中添加描述,如下mydataset

yaml 复制代码
{
  "starcoder_python": {
    "hf_hub_url": "bigcode/starcoderdata",
    "ms_hub_url": "AI-ModelScope/starcoderdata",
    "columns": {
      "prompt": "content"
    },
    "folder": "python"
  },
  "mydataset": {
    "file_name": "mydataset.json",
    "file_sha1": "535e1a88e1d480f80eca38d50216ea3a5dbedfa9"
  }
}

mydataset 是数据集自定义名称,file_namedata 文件夹下数据集json的文件名。file_sha1 通过以下代码哈希加密获得:

python 复制代码
import hashlib
 
def calculate_sha1(file_path):
    sha1 = hashlib.sha1()
    try:
        with open(file_path, 'rb') as file:
            while True:
                data = file.read(8192)  # Read in chunks to handle large files
                if not data:
                    break
                sha1.update(data)
        return sha1.hexdigest()
    except FileNotFoundError:
        return "File not found."
 
# 使用示例
file_path = 'mydataset.json'  # 替换为您的文件路径
sha1_hash = calculate_sha1(file_path)
print("SHA-1 Hash:", sha1_hash)

Train & Inference & Export

具体使用单卡or多卡,微调or全量具体看一下原项目说明,简洁易懂

笔者使用的指令是:

bash 复制代码
bash examples/full_multi_gpu/single_node.sh

single_node内容:

yaml 复制代码
#!/bin/bash
NPROC_PER_NODE=4  # GPU卡数量,和下边的CUDA_VISIBLE_DEVICES数量对应,否则报错
NNODES=1
RANK=0
MASTER_ADDR=127.0.0.1
MASTER_PORT=29500

CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun \
    --nproc_per_node $NPROC_PER_NODE \
    --nnodes $NNODES \
    --node_rank $RANK \
    --master_addr $MASTER_ADDR \
    --master_port $MASTER_PORT \
    src/train.py examples/full_multi_gpu/llama3_full_sft.yaml

再去修改一下你的 stf.yaml 配置文件即可。

train, infer,export model 都只需要一条指令,具体更改配置文件yaml中的参数即可。

bash 复制代码
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml
CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml

Ollama部署

当然前边的 llamafactory-cli chat 也可以进行推理,但是不好用,这时Ollama就闪亮登场

导出llama模型

上一步训练好的llama-factory模型,ollama不能直接使用,需要转换一下格式。

  • 如果是 lora 微调,首先使用 llamafactory-cli export 导出合并成一个模型文件;
  • 全量微调只有一个模型文件,不需要操作。

模型转换代码如下:

bash 复制代码
git clone https://github.com/ollama/ollama.git
cd ollama
# and then fetch its llama.cpp submodule:
git submodule init
git submodule update llm/llama.cpp
# conda 
conda create -n ollama python=3.11
conda activate ollama
pip install -r llm/llama.cpp/requirements.txt
# Then build the quantize tool:
make -C llm/llama.cpp quantize
# convert model
python llm/llama.cpp/convert-hf-to-gguf.py path-to-your-trained-model --outtype f16 --outfile converted.bin

还有不懂可以看原文档Importing 部分。

量化、创建Ollama model、docker部署

Quantize the model(Optional)

bash 复制代码
llm/llama.cpp/quantize converted.bin quantized.bin q4_0

Create a Modelfile for your model:

复制代码
FROM quantized.bin
TEMPLATE "[INST] {{ .Prompt }} [/INST]"

使用docker进行转换Ollama可用的格式:

quantized.binModelfile 移动到 ollama_file 文件夹内(没有创建一个)

bash 复制代码
docker run -itd --gpus=1 -v ollama_file:/root/.ollama -p 11434:11434 --name ollama ollama/ollama

该过程会自动pull镜像,container创建好以后,进入容器,转换模型:

bash 复制代码
# 进入container
docker exec -it ollama /bin/bash/
cd /root/.ollama
# 转换ollama可用格式的模型
ollama create name-to-your-ollama-model -f Modelfile
# 测试转换结果
ollama list

直接在docker内部测试:

bash 复制代码
ollama run name-to-your-ollama-model

停止测试:

bash 复制代码
/bye

退出docker:

bash 复制代码
exit

docker的安装参考笔者另一篇博客Ubuntu装机必备软件和配置

服务器or局域网调用

可以通过curl进行,也可以通过post请求

通过curl:

bash 复制代码
curl http://localhost:11434/api/generate -d '{
  "model": "name-to-your-ollama-model",
  "prompt":"hello",
  "stream": false
}'

通过post请求:

python 复制代码
import json
import requests

# Generate a response for a given prompt with a provided model. This is a streaming endpoint, so will be a series of responses.
# The final response object will include statistics and additional data from the request. Use the callback function to override
# the default handler.
def generate(model_name, prompt, system=None):
    try:
        url = "http://localhost:11434/api/generate"
        payload = {"model": model_name, "prompt": prompt, "system": system}
        # Remove keys with None values
        payload = {k: v for k, v in payload.items() if v is not None}
        
        with requests.post(url, json=payload, stream=True) as response:
            response.raise_for_status()
            # Creating a variable to hold the context history of the final chunk
            final_context = None
            # Variable to hold concatenated response strings if no callback is provided
            full_response = ""

            # Iterating over the response line by line and displaying the details
            for line in response.iter_lines():
                if line:
                    # Parsing each line (JSON chunk) and extracting the details
                    chunk = json.loads(line)

                    if not chunk.get("done"):
                        response_piece = chunk.get("response", "")
                        full_response += response_piece
                        # print(response_piece, end="", flush=True)
                    
                    # Check if it's the last chunk (done is true)
                    if chunk.get("done"):
                        final_context = chunk.get("context")
            
            # Return the full response and the final context
            return full_response, final_context
    except requests.exceptions.RequestException as e:
        print(f"An error occurred: {e}")
        return None, None

if __name__ == '__main__':
    model = 'name-to-your-ollama-model'
    SYS_PROMPT= 'hello'
    USER_PROMPT = "what your favorate movie?"
    response1, _ = generate(model_name=model, system=SYS_PROMPT, prompt=USER_PROMPT)
    print(response1)

Langchain部署

上面ollama部署已经比较好用了,但还是缺少一些配置。这个配置也不错

接下来介绍Langchain部署,langchain是个啥,点这里

待更新

相关推荐
小新学习屋3 小时前
大模型-智能体-【篇四: Agent GPT 、AgentTuning、LangChain-Agent】
gpt·langchain·大模型·智能体
马尚道6 小时前
helloworld入门【从0到1,LangChain+RAG全链路实战AI知识库】
langchain
带刺的坐椅9 小时前
LangChain4j 比 SolonAI 强在哪?弱在哪?
java·ai·langchain·solon·mcp
Kay_Liang10 小时前
大语言模型如何精准调用函数—— Function Calling 系统笔记
java·大数据·spring boot·笔记·ai·langchain·tools
沐雪架构师1 天前
乐学LangChain(1):总体架构和核心组件
langchain·学习方法
马尚来1 天前
helloworld入门【从0到1,LangChain+RAG全链路实战AI知识库】
langchain
马尚来1 天前
从0到1,LangChain+RAG全链路实战AI知识库
langchain
临街的小孩1 天前
Docker 容器访问宿主机 Ollama 服务配置教程
llama·argflow
叼菠萝1 天前
AI 应用开发三剑客系列:LangChain 如何撑起 LLM 应用开发基石?
python·langchain
鸿蒙小白龙1 天前
OpenHarmony平台大语言模型本地推理:llama深度适配与部署技术详解
人工智能·语言模型·harmonyos·鸿蒙·鸿蒙系统·llama·open harmony