小学生都能懂的 RRF(Reciprocal Rank Fusion)说明

小学生都能懂的 RRF(Reciprocal Rank Fusion)说明

让我们用一个简单的例子来解释RRF(Reciprocal Rank Fusion)公式。

想象一下,你和你的朋友们都在寻找一本丢失的书。你们每个人都列出了自己认为最有可能藏书的地方,并且按照可能性从高到低排序。RRF公式就是用来结合所有人的列表,找出最有可能的地方。

假设有三个朋友,他们的列表如下:

朋友A的列表:

  1. 书架
  2. 桌子
  3. 床下

朋友B的列表:

  1. 床下
  2. 书架
  3. 桌子

朋友C的列表:

  1. 桌子
  2. 书架
  3. 床下

RRF公式是这样工作的:对于每个地方,我们计算它在每个人列表中的位置的倒数,然后把这些倒数加起来。这个总和就是这个地方的"融合分数"。

例如,对于"书架",它在朋友A的列表中排名第1,在朋友B的列表中排名第2,在朋友C的列表中排名第2。我们计算倒数:

  • 朋友A:1 / 1 = 1
  • 朋友B:1 / 2 = 0.5
  • 朋友C:1 / 2 = 0.5

然后把这三个数加起来:1 + 0.5 + 0.5 = 2。

对于"床下",它在朋友A的列表中排名第3,在朋友B的列表中排名第1,在朋友C的列表中排名第3。我们计算倒数:

  • 朋友A:1 / 3 = 0.33
  • 朋友B:1 / 1 = 1
  • 朋友C:1 / 3 = 0.33

然后把这三个数加起来:0.33 + 1 + 0.33 = 1.66。

对于"桌子",它在朋友A的列表中排名第2,在朋友B的列表中排名第3,在朋友C的列表中排名第1。我们计算倒数:

  • 朋友A:1 / 2 = 0.5
  • 朋友B:1 / 3 = 0.33
  • 朋友C:1 / 1 = 1

然后把这三个数加起来:0.5 + 0.33 + 1 = 1.83。

最后,我们比较这三个地方的"融合分数":书架(2),床下(1.66),桌子(1.83)。书架的分数最高,所以它是最有可能藏书的地方。

这就是RRF公式的基本思想,它帮助我们结合多个列表,找出最有可能的答案。

相关推荐
互联网全栈架构9 分钟前
遨游Spring AI:第一盘菜Hello World
java·人工智能·后端·spring
m0_465215799 分钟前
大语言模型解析
人工智能·语言模型·自然语言处理
张较瘦_1 小时前
[论文阅读] 人工智能+软件工程 | 结对编程中的知识转移新图景
人工智能·软件工程·结对编程
小Q小Q2 小时前
cmake编译LASzip和LAStools
人工智能·计算机视觉
yzx9910132 小时前
基于 Q-Learning 算法和 CNN 的强化学习实现方案
人工智能·算法·cnn
token-go2 小时前
[特殊字符] 革命性AI提示词优化平台正式开源!
人工智能·开源
cooldream20093 小时前
华为云Flexus+DeepSeek征文|基于华为云Flexus X和DeepSeek-R1打造个人知识库问答系统
人工智能·华为云·dify
Blossom.1186 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
DFminer8 小时前
【LLM】fast-api 流式生成测试
人工智能·机器人
郄堃Deep Traffic8 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划