小学生都能懂的 RRF(Reciprocal Rank Fusion)说明

小学生都能懂的 RRF(Reciprocal Rank Fusion)说明

让我们用一个简单的例子来解释RRF(Reciprocal Rank Fusion)公式。

想象一下,你和你的朋友们都在寻找一本丢失的书。你们每个人都列出了自己认为最有可能藏书的地方,并且按照可能性从高到低排序。RRF公式就是用来结合所有人的列表,找出最有可能的地方。

假设有三个朋友,他们的列表如下:

朋友A的列表:

  1. 书架
  2. 桌子
  3. 床下

朋友B的列表:

  1. 床下
  2. 书架
  3. 桌子

朋友C的列表:

  1. 桌子
  2. 书架
  3. 床下

RRF公式是这样工作的:对于每个地方,我们计算它在每个人列表中的位置的倒数,然后把这些倒数加起来。这个总和就是这个地方的"融合分数"。

例如,对于"书架",它在朋友A的列表中排名第1,在朋友B的列表中排名第2,在朋友C的列表中排名第2。我们计算倒数:

  • 朋友A:1 / 1 = 1
  • 朋友B:1 / 2 = 0.5
  • 朋友C:1 / 2 = 0.5

然后把这三个数加起来:1 + 0.5 + 0.5 = 2。

对于"床下",它在朋友A的列表中排名第3,在朋友B的列表中排名第1,在朋友C的列表中排名第3。我们计算倒数:

  • 朋友A:1 / 3 = 0.33
  • 朋友B:1 / 1 = 1
  • 朋友C:1 / 3 = 0.33

然后把这三个数加起来:0.33 + 1 + 0.33 = 1.66。

对于"桌子",它在朋友A的列表中排名第2,在朋友B的列表中排名第3,在朋友C的列表中排名第1。我们计算倒数:

  • 朋友A:1 / 2 = 0.5
  • 朋友B:1 / 3 = 0.33
  • 朋友C:1 / 1 = 1

然后把这三个数加起来:0.5 + 0.33 + 1 = 1.83。

最后,我们比较这三个地方的"融合分数":书架(2),床下(1.66),桌子(1.83)。书架的分数最高,所以它是最有可能藏书的地方。

这就是RRF公式的基本思想,它帮助我们结合多个列表,找出最有可能的答案。

相关推荐
cxr82817 小时前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体
研梦非凡17 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
幂简集成17 小时前
Realtime API 语音代理端到端接入全流程教程(含 Demo,延迟 280ms)
人工智能·个人开发
龙腾-虎跃18 小时前
FreeSWITCH FunASR语音识别模块
人工智能·语音识别·xcode
智慧地球(AI·Earth)18 小时前
给AI配一台手机+电脑?智谱AutoGLM上线!
人工智能·智能手机·电脑
Godspeed Zhao18 小时前
自动驾驶中的传感器技术46——Radar(7)
人工智能·机器学习·自动驾驶
limengshi13839218 小时前
机器学习面试:请介绍几种常用的学习率衰减方式
人工智能·学习·机器学习
AKAMAI18 小时前
Sport Network 凭借 Akamai 实现卓越成就
人工智能·云原生·云计算
周末程序猿19 小时前
机器学习|大模型为什么会出现"幻觉"?
人工智能
JoannaJuanCV19 小时前
大语言模型基石:Transformer
人工智能·语言模型·transformer