小学生都能懂的 RRF(Reciprocal Rank Fusion)说明

小学生都能懂的 RRF(Reciprocal Rank Fusion)说明

让我们用一个简单的例子来解释RRF(Reciprocal Rank Fusion)公式。

想象一下,你和你的朋友们都在寻找一本丢失的书。你们每个人都列出了自己认为最有可能藏书的地方,并且按照可能性从高到低排序。RRF公式就是用来结合所有人的列表,找出最有可能的地方。

假设有三个朋友,他们的列表如下:

朋友A的列表:

  1. 书架
  2. 桌子
  3. 床下

朋友B的列表:

  1. 床下
  2. 书架
  3. 桌子

朋友C的列表:

  1. 桌子
  2. 书架
  3. 床下

RRF公式是这样工作的:对于每个地方,我们计算它在每个人列表中的位置的倒数,然后把这些倒数加起来。这个总和就是这个地方的"融合分数"。

例如,对于"书架",它在朋友A的列表中排名第1,在朋友B的列表中排名第2,在朋友C的列表中排名第2。我们计算倒数:

  • 朋友A:1 / 1 = 1
  • 朋友B:1 / 2 = 0.5
  • 朋友C:1 / 2 = 0.5

然后把这三个数加起来:1 + 0.5 + 0.5 = 2。

对于"床下",它在朋友A的列表中排名第3,在朋友B的列表中排名第1,在朋友C的列表中排名第3。我们计算倒数:

  • 朋友A:1 / 3 = 0.33
  • 朋友B:1 / 1 = 1
  • 朋友C:1 / 3 = 0.33

然后把这三个数加起来:0.33 + 1 + 0.33 = 1.66。

对于"桌子",它在朋友A的列表中排名第2,在朋友B的列表中排名第3,在朋友C的列表中排名第1。我们计算倒数:

  • 朋友A:1 / 2 = 0.5
  • 朋友B:1 / 3 = 0.33
  • 朋友C:1 / 1 = 1

然后把这三个数加起来:0.5 + 0.33 + 1 = 1.83。

最后,我们比较这三个地方的"融合分数":书架(2),床下(1.66),桌子(1.83)。书架的分数最高,所以它是最有可能藏书的地方。

这就是RRF公式的基本思想,它帮助我们结合多个列表,找出最有可能的答案。

相关推荐
顾北1218 分钟前
MCP协议实战|Spring AI + 高德地图工具集成教程
人工智能
wfeqhfxz258878222 分钟前
毒蝇伞品种识别与分类_Centernet模型优化实战
人工智能·分类·数据挖掘
中杯可乐多加冰41 分钟前
RAG 深度实践系列(七):从“能用”到“好用”——RAG 系统优化与效果评估
人工智能·大模型·llm·大语言模型·rag·检索增强生成
珠海西格电力科技1 小时前
微电网系统架构设计:并网/孤岛双模式运行与控制策略
网络·人工智能·物联网·系统架构·云计算·智慧城市
FreeBuf_1 小时前
AI扩大攻击面,大国博弈引发安全新挑战
人工智能·安全·chatgpt
weisian1512 小时前
进阶篇-8-数学篇-7--特征值与特征向量:AI特征提取的核心逻辑
人工智能·pca·特征值·特征向量·降维
Java程序员 拥抱ai2 小时前
撰写「从0到1构建下一代游戏AI客服」系列技术博客的初衷
人工智能
186******205312 小时前
AI重构项目开发全流程:效率革命与实践指南
人工智能·重构
森之鸟2 小时前
多智能体系统开发入门:用鸿蒙实现设备间的AI协同决策
人工智能·harmonyos·m
铁蛋AI编程实战3 小时前
大模型本地轻量化微调+端侧部署实战(免高端GPU/16G PC可运行)
人工智能·架构·开源