小学生都能懂的 RRF(Reciprocal Rank Fusion)说明

小学生都能懂的 RRF(Reciprocal Rank Fusion)说明

让我们用一个简单的例子来解释RRF(Reciprocal Rank Fusion)公式。

想象一下,你和你的朋友们都在寻找一本丢失的书。你们每个人都列出了自己认为最有可能藏书的地方,并且按照可能性从高到低排序。RRF公式就是用来结合所有人的列表,找出最有可能的地方。

假设有三个朋友,他们的列表如下:

朋友A的列表:

  1. 书架
  2. 桌子
  3. 床下

朋友B的列表:

  1. 床下
  2. 书架
  3. 桌子

朋友C的列表:

  1. 桌子
  2. 书架
  3. 床下

RRF公式是这样工作的:对于每个地方,我们计算它在每个人列表中的位置的倒数,然后把这些倒数加起来。这个总和就是这个地方的"融合分数"。

例如,对于"书架",它在朋友A的列表中排名第1,在朋友B的列表中排名第2,在朋友C的列表中排名第2。我们计算倒数:

  • 朋友A:1 / 1 = 1
  • 朋友B:1 / 2 = 0.5
  • 朋友C:1 / 2 = 0.5

然后把这三个数加起来:1 + 0.5 + 0.5 = 2。

对于"床下",它在朋友A的列表中排名第3,在朋友B的列表中排名第1,在朋友C的列表中排名第3。我们计算倒数:

  • 朋友A:1 / 3 = 0.33
  • 朋友B:1 / 1 = 1
  • 朋友C:1 / 3 = 0.33

然后把这三个数加起来:0.33 + 1 + 0.33 = 1.66。

对于"桌子",它在朋友A的列表中排名第2,在朋友B的列表中排名第3,在朋友C的列表中排名第1。我们计算倒数:

  • 朋友A:1 / 2 = 0.5
  • 朋友B:1 / 3 = 0.33
  • 朋友C:1 / 1 = 1

然后把这三个数加起来:0.5 + 0.33 + 1 = 1.83。

最后,我们比较这三个地方的"融合分数":书架(2),床下(1.66),桌子(1.83)。书架的分数最高,所以它是最有可能藏书的地方。

这就是RRF公式的基本思想,它帮助我们结合多个列表,找出最有可能的答案。

相关推荐
没学上了3 分钟前
逻辑回归机器学习
人工智能·深度学习·逻辑回归
CITY_OF_MO_GY20 分钟前
Spark-TTS:基于大模型的文本语音合成工具
人工智能·深度学习·语音识别
阿丢是丢心心27 分钟前
【从0到1搞懂大模型】神经网络的实现:数据策略、模型调优与评估体系(3)
人工智能·深度学习·神经网络
新智元27 分钟前
10²⁶参数,AGI 还需 70 年!清华人大预测届时 GPU 总价达 4000 万倍苹果市值
人工智能·openai
何大春34 分钟前
【对话推荐系统综述】Broadening the View: Demonstration-augmented Prompt Learning for CR
论文阅读·人工智能·深度学习·语言模型·prompt·论文笔记
WenGyyyL35 分钟前
使用OpenCV和MediaPipe库——增强现实特效(在手腕添加虚拟手表)
人工智能·opencv·计算机视觉·ar·cv·mediapipe
东临碣石8238 分钟前
【英伟达AI论文】多模态大型语言模型的高效长视频理解
人工智能·语言模型·自然语言处理
我去热饭39 分钟前
【完整记录】基于腾讯云HAI+DeepSeek快速开发法律咨询(小律师)辅助平台过程
人工智能
CoovallyAIHub40 分钟前
一码难求的Manus,又对计算机视觉产生冲击?复刻开源版已在路上!
人工智能·深度学习·计算机视觉
是理不是里_41 分钟前
人工智能里的深度学习指的是什么?
人工智能·深度学习