MapReduce基础编程项目实践

一、项目实现效果概述

在accounts.txt文件中存储如下,第一列为金额大小,第二列表示收入、支出(0表示收入,1表示支出),第三列表示金额出入的月份。我们要通过MapReduce计算每个月过去后的结余,并根据月份大小进行分区,1-3月为1分区,4-6月为2分区,7-9月为3分区,10-12月为4分区

accounts.txt文件内容如下:

复制代码
123.45,1,1  
56.78,0,2  
89.12,1,3  
45.67,0,4  
34.56,1,5  
78.90,0,6  
67.89,1,7  
23.45,0,8  
98.76,1,9  
12.34,0,10  
56.78,1,11  
43.21,0,12  
87.65,1,1  
34.56,0,2  
76.54,1,3  
65.43,0,4  
54.32,1,5  
43.21,0,6  
32.10,1,7  
21.98,0,8  
10.98,1,9  
98.76,0,10  
76.54,1,11  
65.43,0,12
68.23,1,7  
34.56,0,10  
98.76,1,5  
23.45,0,1  
56.78,1,9  
78.90,0,12  
45.67,1,6  
89.12,0,4  
12.34,1,3  
34.56,0,11  
27.89,1,8  
65.43,0,2  
76.54,1,1  
98.76,0,7  
43.21,1,10  
56.78,0,5  
34.56,1,12  
23.45,0,6  
89.12,1,4  
67.89,0,3  
15.67,1,9  
45.32,0,1  
78.90,1,11  
23.45,0,8  
56.78,1,2  
98.76,0,10  
34.56,1,7  
67.89,0,5  
45.67,1,12  
89.12,0,1  
32.10,1,6  
76.54,0,9  
43.21,1,4  
56.78,0,8  
23.45,1,3  
98.76,0,11  
67.89,1,2  
34.56,0,7  
12.34,1,10  
56.78,0,1  
78.90,1,5  
45.67,0,12  
89.12,1,8  
23.45,0,4  
67.89,1,11  
34.56,0,10  
12.34,1,9  
56.78,0,6  
98.76,1,7  
34.56,0,3  

二、代码部分

1、AccountBean编写
java 复制代码
package org.example.maperduce.model;

import org.apache.hadoop.io.Writable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

public class AccountBean implements Writable {

    //金额大小
    private Float spend;

    //表示类型
    private Integer type;

    //支出月份
    private Integer month;

    @Override
    public String toString() {
        return spend+" "+month;
    }

    public AccountBean() {
    }

    public AccountBean(Float spend, Integer type, Integer month) {
        this.spend = spend;
        this.type = type;
        this.month = month;
    }

    //重写序列化方法
    @Override
    public void write(DataOutput out) throws IOException {
        out.writeFloat(spend);
        out.writeInt(type);
        out.writeInt(month);
    }

    //重写反序列化方法
    @Override
    public void readFields(DataInput in) throws IOException {
        this.spend=in.readFloat();
        this.type=in.readInt();
        this.month= in.readInt();
    }


    public Integer getMonth() {
        return month;
    }

    public void setMonth(Integer month) {
        this.month = month;
    }

    public Float getSpend() {
        return spend;
    }

    public void setSpend(Float spend) {
        this.spend = spend;
    }

    public Integer getType() {
        return type;
    }

    public void setType(Integer type) {
        this.type = type;
    }
}
2、AccountMapper编写
java 复制代码
package org.example.maperduce.account;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.example.maperduce.model.AccountBean;

import java.io.IOException;

public class AccountMapper extends Mapper<LongWritable,Text, IntWritable, AccountBean> {

    //新建AccountBean对象,作为输出的value
    private AccountBean valueOut=new AccountBean();

    //新建IntWritable作为输出的key
    private IntWritable keyOut=new IntWritable();

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        //获取一行数据
        String line=value.toString();
        //先对数据进行去空格处理,再根据分隔符进行拆分
        String[] accountData=line.split(",");

        //根据下标提取数据
        String spend=accountData[0];
        String type=accountData[1];
        String month=accountData[2];
        //System.out.println(spend);

        //为对象赋值
        valueOut.setSpend(Float.parseFloat(spend.trim()));
        valueOut.setType(Integer.parseInt(type.trim()));
        valueOut.setMonth(Integer.parseInt(month.trim()));

        //为输出的key赋值
        keyOut.set(Integer.parseInt(month.trim()));

        //System.out.println("keyOut:"+keyOut);
        //System.out.println("valueOut:"+valueOut.toString());
        //map阶段输出
        context.write(keyOut,valueOut);
    }

}
3、 AccountReducer编写
java 复制代码
package org.example.maperduce.account;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapreduce.Reducer;
import org.example.maperduce.model.AccountBean;

import java.io.IOException;

public class AccountReducer extends Reducer<IntWritable, AccountBean, IntWritable, AccountBean> {

    //创建一个AccountBean对象作为输出的value
    private AccountBean valueOut=new AccountBean();


    @Override
    protected void reduce(IntWritable key, Iterable<AccountBean> values,Context context) throws IOException, InterruptedException {

        //定义一个月的结余
        Float totalSumSpend=0f;
        Integer month=0;

        //累加计算总花费
        for(AccountBean accountBean:values){
            Float Spend=accountBean.getSpend();
            Integer type=accountBean.getType();
            month=accountBean.getMonth();
            if(type==0){
                totalSumSpend+=Spend;
            }
            else {
                totalSumSpend-=Spend;
            }
        }

        //为输出的value赋值
        valueOut.setSpend(totalSumSpend);
        valueOut.setMonth(month);

        //System.out.println("reducer:"+valueOut.toString());
        //reduce阶段输出
        context.write(key,valueOut);
    }
}
4、SpendPartitioner编写
java 复制代码
package org.example.maperduce.account;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapreduce.Partitioner;
import org.example.maperduce.model.AccountBean;

public class SpendPartitioner extends Partitioner<IntWritable, AccountBean> {

    @Override
    public int getPartition(IntWritable intWritable, AccountBean accountBean, int i) {

        //获取花销
        int month=accountBean.getMonth();

        //定义分区号
        int partitionNum=0;

        if(month<4){
            partitionNum=0;
        }else if(month<7) {
            partitionNum=1;
        }else if(month<10){
            partitionNum=2;
        }else {
            partitionNum=3;
        }

        return partitionNum;
    }

}
5、AccountDriver编写
java 复制代码
package org.example.maperduce.account;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.Job;
import org.example.maperduce.model.AccountBean;

import java.io.IOException;


public class AccountDriver {

    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
        //1、获取配置信息对象和job对象
        Configuration conf=new Configuration();
        Job job=Job.getInstance(conf);

        //2、关联Driver类
        job.setJarByClass(AccountDriver.class);

        //3、设置Mapper和Reduce的类
        job.setMapperClass(AccountMapper.class);
        job.setReducerClass(AccountReducer.class);

        //4、设置Mapper输出的kv类型
        job.setMapOutputKeyClass(IntWritable.class);
        job.setMapOutputValueClass(AccountBean.class);

        //5、设置最终输出的kv类型(Reduce输出的kv类型)
        job.setOutputKeyClass(IntWritable.class);
        job.setOutputValueClass(AccountBean.class);

        //6、设置文件的输入路径和计算结果的输出路径
        FileInputFormat.setInputPaths(job,new Path(args[0]));
        FileOutputFormat.setOutputPath(job,new Path(args[1]));
        //7、设置采用自定义分区
        job.setPartitionerClass(SpendPartitioner.class);
        //设置Reduce Task的个数
        job.setNumReduceTasks(4);

        //8、提交任务进行计算
        boolean result=job.waitForCompletion(true);

        System.out.println(result?"计算成功":"计算失败");
    }
}
6、pom.xml文件
java 复制代码
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>org.example</groupId>
    <artifactId>hdfs_api</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    </properties>

    <dependencies>

        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.11</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-common -->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>3.1.3</version>
        </dependency>

        <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-hdfs -->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>3.1.3</version>
        </dependency>

        <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-client -->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>3.1.3</version>
        </dependency>


    </dependencies>

    <build>
        <plugins>
            <plugin>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.6.1</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                </configuration>
            </plugin>
            <plugin>
                <artifactId>maven-assembly-plugin</artifactId>
                <configuration>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

</project>

三、运行配置

(1)选择Edit Configurations

(2)点击"+"号选择Application

(3)如图输入信息,输入好后先点Apply再点OK

四、运行结果

注意运行前需保证output文件夹在对应目录下不存在

1、在idea上运行

(1)控制台输出结果

(2)output文件夹结果

在对应目录下可看见/output目录生成,output文件夹中内容如下:

点击进去即可查看结果

2、在集群上运行

可参考另一篇博客内容:打包idea代码至集群上运行-CSDN博客

相关推荐
科技块儿6 分钟前
电商风控实战:如何利用访客IP防控有效识别刷d行为?
大数据·网络协议·tcp/ip
MoonBit月兔12 分钟前
生态影响力持续提升,MoonBit 登 2025 中国技术品牌影响力榜单
大数据·人工智能·ai编程·moonbit
xiaolilaoshi66622 分钟前
备战浙大MBA复试,紧盯国家线有瑕疵!
大数据
CES_Asia2 小时前
亚洲科技话语权之争:CES Asia 2026核心展区席位进入收官阶段
大数据·人工智能·科技·物联网·机器人
quant_19862 小时前
如何处理大规模行情数据:从源头到终端的实战教程
大数据·开发语言·经验分享·python·金融
房产中介行业研习社2 小时前
市面上比较主流的房产中介管理系统有哪些推荐?
大数据·人工智能·房产直播技巧·房产直播培训
云器科技3 小时前
NinjaVan x 云器Lakehouse: 从传统自建Spark架构升级到新一代湖仓架构
大数据·ai·架构·spark·湖仓平台
泰迪智能科技3 小时前
分享|2025年广东水利电力职业技术学院泰迪数据智能产业学院订单班结业典礼圆满结束
大数据·人工智能
中科天工3 小时前
如何实现工业AI在智能制造中的应用?
大数据·人工智能·智能
Sui_Network4 小时前
Sui 2025→2026 直播回顾中文版
大数据·前端·人工智能·深度学习·区块链