我们知道LLM(大语言模型)的底模是基于已经过期的公开数据训练出来的,对于新的知识或者私有化的数据LLM一般无法作答,此时LLM会出现"幻觉"。针对"幻觉"问题,一般的解决方案是采用RAG做检索增强。
但是我们不可能把所有数据都丢给LLM去学习,比如某个公司积累的某个行业的大量内部知识。此时就需要一个私有化的文档搜索工具了。
本文聊聊如何使用LangChain结合LLM快速做一个私有化的文档搜索工具。之前介绍过,LangChain几乎是LLM应用开发的第一选择,它的野心也比较大,它致力于将自己打造成LLM应用开发的最大社区。自然,它有这方面的成熟解决方案。
文末,还会向朋友们推荐一款非常好用的AI机器人和LLM API超市,价格实惠又稳定,还可以领一波福利。
1. RAG检索流程
使用 LangChain 实现私有化文档搜索的主要流程,如下图所示:
text
文档加载 → 文档分割 → 文档嵌入 → 向量化存储 → 文档检索 → 生成回答
2. 代码实践细节
2.1. 文档加载
首先,我们需要加载文档数据。文档可以是各种格式,比如文本文件、PDF、Word 等。使用 LangChain,可以轻松地加载这些文档。下面以PDF为例:
Python
from langchain_community.document_loaders import PyPDFLoader
loader = PyPDFLoader("./GV2.pdf")
docs = loader.load()
2.2. 文档分割
加载的文档通常会比较大,为了更高效地处理和检索,我们需要将文档分割成更小的段落或句子。LangChain 提供了便捷的文本分割工具,可以按句子、块长度等方式分割文档。
Python
from langchain.text_splitter import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=50,
chunk_overlap=20,
separators=["\n", "。", "!", "?", ",", "、", ""],
add_start_index=True,
)
texts = text_splitter.split_documents(docs)
分割后的文档内容可以进一步用于生成向量。
2.3. 文档嵌入 Embeddings
文档分割后,我们需要将每一段文本转换成向量,这个过程称为文档嵌入。文档嵌入是将文本转换成高维向量,这是相似性搜索的关键。这里我们选择OpenAI的嵌入模型来生成文档的嵌入向量。
Python
from langchain_openai import OpenAIEmbeddings
embeddings_model = OpenAIEmbeddings(
openai_api_key="sk-xxxxxxxxxxx",
openai_api_base="https://api.302.ai/v1",
)
txts = [txt.page_content for txt in texts]
embeddings = embeddings_model.embed_documents(txts)
2.4. 文档向量化存储
接下来,我们需要将生成的向量化的文档,存入向量数据库中。向量数据库主要用来做相似性搜索,可以高效地存储和检索高维向量。LangChain 支持与多种向量数据库的集成,比如 Pinecone、FAISS、Chroma 等。
本文以FAISS为例,首先需要安装FAISS,直接使用pip install faiss-cpu
安装。
Python
from langchain_community.vectorstores import FAISS
db = FAISS.from_documents(texts, embeddings_model)
FAISS.save_local(db, "faiss_db2")
2.5. 文档检索
当用户提出问题时,我们需要在向量数据库中检索最相关的文档。检索过程是计算用户问题的向量表示,然后在向量数据库中查找与之最相似的文档。最后将找到的文档内容,拼接成一个大的上下文。
向量数据库的检索支持多种模式,本文先用最简单的,后续再出文章继续介绍别的模式。
Python
from langchain.retrievers.multi_query import MultiQueryRetriever
retriever = db.as_retriever()
# retriever = db.as_retriever(search_type="similarity_score_threshold",search_kwargs={"score_threshold":.1,"k":5})
# retriever = db.as_retriever(search_type="mmr")
# retriever = MultiQueryRetriever.from_llm(
# retriever = db.as_retriever(),
# llm = model,
# )
context = retriever.get_relevant_documents(query="张学立是谁?")
_content = ""
for i in context:
_content += i.page_content
2.6. 将检索内容丢给LLM作答
最后,我们需要将检索到的文档内容丢入到 prompt 中,让LLM生成回答。LangChain 可以PromptTemplate模板的方式,将检索到的上下文动态嵌入到 prompt 中,然后丢给LLM,这样可以生成准确的回答。
Python
from langchain.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
question = "张学立是谁?"
template = [
(
"system",
"你是一个处理文档的助手,你会根据下面提供<context>标签里的上下文内容来继续回答问题.\n 上下文内容\n <context>\n{context} \n</context>\n",
),
("human", "你好!"),
("ai", "你好"),
("human", "{question}"),
]
prompt = ChatPromptTemplate.from_messages(template)
messages = prompt.format_messages(context=_content, question=question)
response = model.invoke(messages)
output_parser = StrOutputParser()
output_parser.invoke(response)
2.7. 完整代码
最后,将以上所有代码串起来,整合到一起,如下:
Python
from langchain_openai import ChatOpenAI
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.retrievers.multi_query import MultiQueryRetriever
from langchain.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
model = ChatOpenAI(
model_name="gpt-3.5-turbo",
openai_api_key="sk-xxxxxxx",
openai_api_base="https://api.302.ai/v1",
)
loader = PyPDFLoader("./GV2.pdf")
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=50,
chunk_overlap=20,
separators=["\n", "。", "!", "?", ",", "、", ""],
add_start_index=True,
)
texts = text_splitter.split_documents(docs)
embeddings_model = OpenAIEmbeddings(
openai_api_key="sk-xxxxxxx",
openai_api_base="https://api.302.ai/v1",
)
txts = [txt.page_content for txt in texts]
embeddings = embeddings_model.embed_documents(txts)
db = FAISS.from_documents(texts, embeddings_model)
FAISS.save_local(db, "faiss_db2")
retriever = db.as_retriever()
template = [
(
"system",
"你是一个处理文档的助手,你会根据下面提供<context>标签里的上下文内容来继续回答问题.\n 上下文内容\n <context>\n{context} \n</context>\n",
),
("human", "你好!"),
("ai", "你好"),
("human", "{question}"),
]
prompt = ChatPromptTemplate.from_messages(template)
question = "张学立是谁?"
context = retriever.get_relevant_documents(query=question)
_content = ""
for i in context:
_content += i.page_content
messages = prompt.format_messages(context=_content, question=question)
response = model.invoke(messages)
output_parser = StrOutputParser()
output_parser.invoke(response)
2.8. 总结、推荐
通过 LangChain可以轻松实现私有化文档搜索,充分利用LLM的能力来处理和检索文档信息。按照文中的步骤,你也可以轻松实现。
好的问答系统离不开优秀的LLM,根据我的个人经验,OpenAI的大模型能力排名是Top1的。但是使用OpenAI不方便,不但需要梯子而且还不稳定。
一款好的LLM摆在面前,却用不了,着实头疼。有没有方便稳定的方式呢?当然有啦,下面我来推荐一款AI自助平台,不但有问答机器人、文生图机器人、文生视频机器人,还有常见的LLM API,稳定又还便宜。
3. 推荐一款好用的AI平台 - 302.AI
3.1. 什么是302.AI
302.AI是一个汇集全球顶级AI的自助平台,汇集全球各类顶尖AI大模型,提供多种AI机器人,各种AI工具的使用和AI API接入。
这个平台太适合开发者了,一站式配齐了 支持各种模型的工具 和 AI API,再也不用这个网站用一下,那个网站用一下了。
自由配置机器人、自由配置各种模型,每一款都很能打。
3.2. 302.AI的优势
我为什么愿意使用302.AI呢?主要还是有点比较多:
- 功能全面:平台提供了各种机器人,其中包括不限于文字处理,图片处理,声音处理。 这一点就可以轻松应付我们平时的工作了,无需到处找AI工具网站。总之,平台提供的机器人,工具和API多种使用方法,可以满足从小白到开发者多种角色的需求。
- 精选优质大模型:平台帮用户测试市面上众多的AI模型,挑出最好用的模型接入到平台,简化用户的挑选成本。而且再大模型的API调用处,还很贴心的集成了Apifox,在线调试,自动生成多种语言的代码。
- 价格透明价格便宜:价格透明,token计算清晰,我对比过多个代理的价格,302.AI绝对是最便宜的,没有之一。
- 按需付费,零门槛:302.AI另外一个特点是,不像大部分的AI工具网站按月收费或者按年收费,302.AI是按需付费,用多少付多少,价格便宜又透明,计费清晰,更无须担心跑路。这两年我见过的倒闭的AI工具站太多了。
- 管理者和使用者分离:使用者无需关心复杂的AI设置,让懂AI的管理者来配置,配置完毕后分享给使用者,简化使用流程。小白也可简易使用。更无需使用梯子,方便又稳定。
- 稳定性好:从我最近的使用感受来看,整体还是比较稳定的。不像有些API,时不时的给我冒一个配额不足的情况。
下面上几个截图,功能较多,我就不一一解说了,欢迎朋友们自行尝试。
总之,302.AI是一个可以满足从工具到API的聚合AI网站,也是一个可以满足从小白到开发者的需求的AI网站,同时,又兼顾了稳定性和性价比。更多功能,欢迎朋友们自行尝试解锁。
3.3. 粉丝福利
我这边创建了AI全能工具箱
分享给大家体验,每天都会有 5美元额度,先到先用。
AI全能工具箱链接:https://aitoolbox1-all.tools302.com?pwd=0658 分享码0658,注册完填写个问卷会得到1美元的试用额度。
对于开发者朋友,可以私信我获取免费token,薅一波羊毛。
=====>>>>>> 关于我 <<<<<<=====
本篇完结!欢迎点赞 关注 收藏!!!