使用 YOLOv8 实现人体姿态检测

引言

在计算机视觉的各种应用中,人体姿态检测是一项极具挑战性的任务,它能够帮助我们理解人体各部位的空间位置。本文将详细介绍如何使用 YOLOv8 和 Python 实现一个人体姿态检测系统,涵盖模型加载、图像预处理、姿态预测到结果可视化的全流程实现。本文只做了行走,站立,跳三种姿态判断,需要其他姿态可自行添加。

开发环境

  • Python 3.8+
  • PyTorch 1.7+
  • OpenCV 4.5+
  • ultralytics YOLOv8

1. 模型加载与初始化

首先,我们需要一个 YOLOv8 的预训练模型,该模型可以从 Ultralytics 官方网站下载。加载模型的主要目的是将其调整到评估模式,确保在推断时模型的表现为最优。

python 复制代码
import torch

class YOLOv8Pose:
    def __init__(self, model_path, device='cpu', conf=0.25, iou=0.7):
        self.model = self.load_model(model_path, device)
        # 其他初始化设置

    def load_model(self, model_path, device):
        ckpt = torch.load(model_path, map_location=device)
        model = ckpt['model'].to(device).eval()
        return model

2. 图像预处理

图像预处理是检测流程中不可或缺的一部分,我们需要调整图像的大小以适应模型的输入要求,同时进行归一化处理。

python 复制代码
import cv2 as cv
from ultralytics.data.augment import LetterBox

def preprocess(self, img_path):
    im = cv.imread(img_path)
    im = self.letterbox(im)
    im = im[..., ::-1].transpose((0, 3, 1, 2))  # BGR to RGB
    im = np.ascontiguousarray(im)
    im = torch.from_numpy(im).to(self.device).float() / 255.0
    return im

3. 推断与后处理

使用加载的模型进行前向推断,并对输出的检测结果进行处理。

python 复制代码
def infer(self, img):
    preds = self.model(img)
    # 使用非极大抑制处理预测结果
    return preds

def postprocess(self, prediction):
    # 调整预测框,解析关键点
    return results

4. 结果可视化

对检测到的姿态进行可视化,包括绘制边框、关键点和骨骼连接。

python 复制代码
def draw_results(self, image, results):
    # 使用 OpenCV 绘制结果
    return image

5. 整合与测试

将上述所有步骤整合到一个流程中,对指定的图片进行处理并展示结果。

python 复制代码
if __name__ == "__main__":
    yolov8 = YOLOv8Pose(model_path='yolov8s-pose.pt')
    img_path = 'path_to_image.png'
    img = yolov8.preprocess(img_path)
    prediction = yolov8.infer(img)
    results = yolov8.postprocess(prediction)
    final_image = yolov8.draw_results(img, results)
    cv.imshow('Detection Results', final_image)
    cv.waitKey(0)

效果

源码已上传到github,需要源码请私信或着评论区留下邮箱。


希望这篇博客能够帮助你理解并实践 YOLOv8 在人体姿态检测上的应用!

相关推荐
豆芽8192 小时前
图解YOLO(You Only Look Once)目标检测(v1-v5)
人工智能·深度学习·学习·yolo·目标检测·计算机视觉
Eric.Lee20212 小时前
数据集-目标检测系列- F35 战斗机 检测数据集 F35 plane >> DataBall
人工智能·算法·yolo·目标检测·计算机视觉
白熊18819 小时前
【计算机视觉】CV实战项目 - 基于YOLOv5与DeepSORT的智能交通监控系统:原理、实战与优化
人工智能·yolo·计算机视觉
FPGA开源工坊21 小时前
FPGA上实现YOLOv5的一般过程
yolo·fpga开发
埃菲尔铁塔_CV算法2 天前
YOLO 模型的深度剖析及其在生物医药领域的创新应用
深度学习·神经网络·yolo·目标检测·计算机视觉
limengshi1383922 天前
使用Python将YOLO的XML标注文件转换为TXT文件格式
xml·python·yolo
unix2linux2 天前
YOLO v5 Series - FFmpeg & (HTML5 + FLV.js ) & ONNX YOLOv5s Integrating
yolo·ffmpeg·html5
宽容人厚载物2 天前
Jetson Orin NX 部署YOLOv12笔记
嵌入式硬件·yolo·jetson·yolov12·英伟达开发板
安步当歌3 天前
【目标检测】对YOLO系列发展的简单理解
图像处理·yolo·目标检测·计算机视觉
牙牙要健康3 天前
【深度学习】【目标检测】【Ultralytics-YOLO系列】YOLOV3核心文件yolo.py解读
深度学习·yolo·目标检测