使用 YOLOv8 实现人体姿态检测

引言

在计算机视觉的各种应用中,人体姿态检测是一项极具挑战性的任务,它能够帮助我们理解人体各部位的空间位置。本文将详细介绍如何使用 YOLOv8 和 Python 实现一个人体姿态检测系统,涵盖模型加载、图像预处理、姿态预测到结果可视化的全流程实现。本文只做了行走,站立,跳三种姿态判断,需要其他姿态可自行添加。

开发环境

  • Python 3.8+
  • PyTorch 1.7+
  • OpenCV 4.5+
  • ultralytics YOLOv8

1. 模型加载与初始化

首先,我们需要一个 YOLOv8 的预训练模型,该模型可以从 Ultralytics 官方网站下载。加载模型的主要目的是将其调整到评估模式,确保在推断时模型的表现为最优。

python 复制代码
import torch

class YOLOv8Pose:
    def __init__(self, model_path, device='cpu', conf=0.25, iou=0.7):
        self.model = self.load_model(model_path, device)
        # 其他初始化设置

    def load_model(self, model_path, device):
        ckpt = torch.load(model_path, map_location=device)
        model = ckpt['model'].to(device).eval()
        return model

2. 图像预处理

图像预处理是检测流程中不可或缺的一部分,我们需要调整图像的大小以适应模型的输入要求,同时进行归一化处理。

python 复制代码
import cv2 as cv
from ultralytics.data.augment import LetterBox

def preprocess(self, img_path):
    im = cv.imread(img_path)
    im = self.letterbox(im)
    im = im[..., ::-1].transpose((0, 3, 1, 2))  # BGR to RGB
    im = np.ascontiguousarray(im)
    im = torch.from_numpy(im).to(self.device).float() / 255.0
    return im

3. 推断与后处理

使用加载的模型进行前向推断,并对输出的检测结果进行处理。

python 复制代码
def infer(self, img):
    preds = self.model(img)
    # 使用非极大抑制处理预测结果
    return preds

def postprocess(self, prediction):
    # 调整预测框,解析关键点
    return results

4. 结果可视化

对检测到的姿态进行可视化,包括绘制边框、关键点和骨骼连接。

python 复制代码
def draw_results(self, image, results):
    # 使用 OpenCV 绘制结果
    return image

5. 整合与测试

将上述所有步骤整合到一个流程中,对指定的图片进行处理并展示结果。

python 复制代码
if __name__ == "__main__":
    yolov8 = YOLOv8Pose(model_path='yolov8s-pose.pt')
    img_path = 'path_to_image.png'
    img = yolov8.preprocess(img_path)
    prediction = yolov8.infer(img)
    results = yolov8.postprocess(prediction)
    final_image = yolov8.draw_results(img, results)
    cv.imshow('Detection Results', final_image)
    cv.waitKey(0)

效果

源码已上传到github,需要源码请私信或着评论区留下邮箱。


希望这篇博客能够帮助你理解并实践 YOLOv8 在人体姿态检测上的应用!

相关推荐
B站计算机毕业设计之家16 小时前
智慧交通项目:Python+YOLOv8 实时交通标志系统 深度学习实战(TT100K+PySide6 源码+文档)✅
人工智能·python·深度学习·yolo·计算机视觉·智慧交通·交通标志
听风吹雨yu1 天前
RK3588从数据集到训练到部署YoloV8
linux·yolo·开源·rk3588·rknn
weixin_456904271 天前
YOLOv11安卓目标检测App完整开发指南
android·yolo·目标检测
B站计算机毕业设计之家1 天前
智能监控项目:Python 多目标检测系统 目标检测 目标跟踪(YOLOv8+ByteTrack 监控/交通 源码+文档)✅
python·yolo·目标检测·目标跟踪·智慧交通·交通·多目标检测
深瞳智检2 天前
YOLO算法原理详解系列 第002期-YOLOv2 算法原理详解
人工智能·算法·yolo·目标检测·计算机视觉·目标跟踪
szxinmai主板定制专家2 天前
基于 ZYNQ ARM+FPGA+AI YOLOV4 的电网悬垂绝缘子缺陷检测系统的研究
arm开发·人工智能·嵌入式硬件·yolo·fpga开发
飞翔的佩奇2 天前
【完整源码+数据集+部署教程】 水果叶片分割系统: yolov8-seg-dyhead
人工智能·yolo·计算机视觉·数据集·yolov8·yolo11·水果叶片分割系统
Hcoco_me3 天前
YOLO入门教程(番外):目标检测的一阶段学习方法
yolo·目标检测·学习方法
七芒星20233 天前
多目标识别YOLO :YOLOV3 原理
图像处理·人工智能·yolo·计算机视觉·目标跟踪·分类·聚类
深瞳智检3 天前
YOLO算法原理详解系列 第007期-YOLOv7 算法原理详解
人工智能·算法·yolo·目标检测·计算机视觉·目标跟踪