创建一个基于YOLOv8+PyQt界面的驾驶员疲劳驾驶检测系统 实现对驾驶员疲劳状态的打哈欠检测,头部下垂 疲劳眼睛检测识别

如何使用Yolov8创建一个基于YOLOv8的驾驶员疲劳驾驶检测系统

文章目录

1

疲劳驾驶检测数据集。yolo标签。标签类别序号为0,1,2,3。注意编号从0开始计数,共4类。

创建一个基于YOLOv8的驾驶员疲劳驾驶检测系统,并且带有PyQt界面,我们可以按照以下步骤进行。请注意,由于YOLOv8在撰写此回答时并不是一个实际发布的模型版本,我们将基于YOLOv5的流程和假设YOLOv8有类似的API进行说明。请根据实际情况调整代码以适配YOLOv8的具体实现。

文章及代码仅供参考。

文章目录

1. 数据集准备

首先,确保你的数据集已经准备好,并按照YOLO格式标注(即每行代表一个对象,格式为class_id x_center y_center width height,所有值均为相对值)。对于疲劳驾驶检测,假设我们有4种类别:

  • 0: 疲劳的眼睛
  • 1: 打哈欠
  • 2: 头部下垂
  • 3: 正常状态

2. 安装依赖

安装必要的依赖库:

bash 复制代码
pip install torch torchvision torchaudio
git clone https://github.com/ultralytics/yolov5  # 假设YOLOv8有相似的仓库结构
cd yolov5
pip install -r requirements.txt

3. 创建PyQt界面

创建一个简单的PyQt界面用于展示检测结果、选择图片或视频文件以及启动摄像头实时检测。

python 复制代码
import sys
from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel, QVBoxLayout, QWidget, QPushButton, QFileDialog
from PyQt5.QtGui import QImage, QPixmap
from PyQt5.QtCore import QTimer
import cv2
import torch
from ultralytics import YOLO  # 假设YOLOv8使用类似接口

class MainWindow(QMainWindow):
    def __init__(self):
        super().__init__()
        self.setWindowTitle("Driver Fatigue Detection")
        self.setGeometry(100, 100, 640, 480)

        self.initUI()
        self.model = YOLO('yolov8n.pt')  # 使用适合的预训练模型或自定义模型

    def initUI(self):
        self.image_label = QLabel(self)
        self.layout = QVBoxLayout()
        self.layout.addWidget(self.image_label)

        self.detect_image_button = QPushButton("Detect Image", self)
        self.detect_image_button.clicked.connect(self.detect_image)
        self.layout.addWidget(self.detect_image_button)

        self.detect_video_button = QPushButton("Detect Video", self)
        self.detect_video_button.clicked.connect(self.detect_video)
        self.layout.addWidget(self.detect_video_button)

        self.camera_button = QPushButton("Camera", self)
        self.camera_button.clicked.connect(self.start_camera)
        self.layout.addWidget(self.camera_button)

        central_widget = QWidget()
        central_widget.setLayout(self.layout)
        self.setCentralWidget(central_widget)

    def detect_image(self):
        file_path, _ = QFileDialog.getOpenFileName(self, "Select Image", "", "Images (*.png *.xpm *.jpg *.bmp)")
        if file_path:
            img = cv2.imread(file_path)
            results = self.model(img)
            annotated_img = results[0].plot()
            self.show_image(annotated_img)

    def detect_video(self):
        file_path, _ = QFileDialog.getOpenFileName(self, "Select Video", "", "Videos (*.mp4 *.avi *.mov)")
        if file_path:
            cap = cv2.VideoCapture(file_path)
            while True:
                ret, frame = cap.read()
                if not ret: break
                results = self.model(frame)
                annotated_frame = results[0].plot()
                self.show_image(annotated_frame)
                if cv2.waitKey(1) & 0xFF == ord('q'): break
            cap.release()

    def start_camera(self):
        self.cap = cv2.VideoCapture(0)
        self.timer = QTimer(self)
        self.timer.timeout.connect(self.update_frame)
        self.timer.start(30)

    def update_frame(self):
        ret, frame = self.cap.read()
        if ret:
            results = self.model(frame)
            annotated_frame = results[0].plot()
            self.show_image(annotated_frame)

    def show_image(self, img):
        h, w, ch = img.shape
        bytes_per_line = ch * w
        qimg = QImage(img.data, w, h, bytes_per_line, QImage.Format_BGR888)
        pixmap = QPixmap.fromImage(qimg)
        self.image_label.setPixmap(pixmap)

if __name__ == "__main__":
    app = QApplication(sys.argv)
    window = MainWindow()
    window.show()
    sys.exit(app.exec_())

4. 模型训练

如果你需要重新训练模型,可以参考前面提供的关于YOLOv5训练的示例代码进行调整。记得修改data.yaml文件中的类别数量和名称以匹配你的数据集。

为了创建一个基于YOLOv8的驾驶员疲劳驾驶检测系统,并且带有PyQt界面,我们需要详细说明模型训练和界面开发的步骤。以下是详细的代码和解释。

1. 数据集准备

确保你的数据集已经准备好,并按照YOLO格式标注(即每行代表一个对象,格式为class_id x_center y_center width height,所有值均为相对值)。对于疲劳驾驶检测,假设我们有4种类别:

  • 0: 疲劳的眼睛
  • 1: 打哈欠
  • 2: 头部下垂
  • 3: 正常状态

2. 模型训练

数据集配置文件 (data.yaml)
yaml 复制代码
train: ./images/train
val: ./images/val
test: ./images/test

nc: 4  # number of classes
names: ['open_eye', 'yawn', 'head_down', 'normal']
训练脚本 (train.py)
python 复制代码
import torch
from ultralytics import YOLO

# Load the model
model = YOLO('yolov8n.yaml')  # or yolov8s, yolov8x, custom

# Train the model
results = model.train(
    data='path/to/data.yaml',
    epochs=100,
    imgsz=640,
    batch=16,
    name='driver_fatigue'
)

3. PyQt界面开发

创建一个简单的PyQt界面用于展示检测结果、选择图片或视频文件以及启动摄像头实时检测。

主程序 (MainProgram.py)
python 复制代码
import sys
from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel, QVBoxLayout, QWidget, QPushButton, QFileDialog
from PyQt5.QtGui import QImage, QPixmap
from PyQt5.QtCore import QTimer
import cv2
import torch
from ultralytics import YOLO

class MainWindow(QMainWindow):
    def __init__(self):
        super().__init__()
        self.setWindowTitle("Driver Fatigue Detection")
        self.setGeometry(100, 100, 640, 480)

        self.initUI()
        self.model = YOLO('runs/train/driver_fatigue/weights/best.pt')

    def initUI(self):
        self.image_label = QLabel(self)
        self.layout = QVBoxLayout()
        self.layout.addWidget(self.image_label)

        self.detect_image_button = QPushButton("Detect Image", self)
        self.detect_image_button.clicked.connect(self.detect_image)
        self.layout.addWidget(self.detect_image_button)

        self.detect_video_button = QPushButton("Detect Video", self)
        self.detect_video_button.clicked.connect(self.detect_video)
        self.layout.addWidget(self.detect_video_button)

        self.camera_button = QPushButton("Camera", self)
        self.camera_button.clicked.connect(self.start_camera)
        self.layout.addWidget(self.camera_button)

        central_widget = QWidget()
        central_widget.setLayout(self.layout)
        self.setCentralWidget(central_widget)

    def detect_image(self):
        file_path, _ = QFileDialog.getOpenFileName(self, "Select Image", "", "Images (*.png *.xpm *.jpg *.bmp)")
        if file_path:
            img = cv2.imread(file_path)
            results = self.model(img)
            annotated_img = results[0].plot()
            self.show_image(annotated_img)

    def detect_video(self):
        file_path, _ = QFileDialog.getOpenFileName(self, "Select Video", "", "Videos (*.mp4 *.avi *.mov)")
        if file_path:
            cap = cv2.VideoCapture(file_path)
            while True:
                ret, frame = cap.read()
                if not ret: break
                results = self.model(frame)
                annotated_frame = results[0].plot()
                self.show_image(annotated_frame)
                if cv2.waitKey(1) & 0xFF == ord('q'): break
            cap.release()

    def start_camera(self):
        self.cap = cv2.VideoCapture(0)
        self.timer = QTimer(self)
        self.timer.timeout.connect(self.update_frame)
        self.timer.start(30)

    def update_frame(self):
        ret, frame = self.cap.read()
        if ret:
            results = self.model(frame)
            annotated_frame = results[0].plot()
            self.show_image(annotated_frame)

    def show_image(self, img):
        h, w, ch = img.shape
        bytes_per_line = ch * w
        qimg = QImage(img.data, w, h, bytes_per_line, QImage.Format_BGR888)
        pixmap = QPixmap.fromImage(qimg)
        self.image_label.setPixmap(pixmap)

if __name__ == "__main__":
    app = QApplication(sys.argv)
    window = MainWindow()
    window.show()
    sys.exit(app.exec_())

4. 运行项目

  1. 安装依赖

    bash 复制代码
    pip install torch torchvision torchaudio
    git clone https://github.com/ultralytics/yolov5  # 假设YOLOv8有相似的仓库结构
    cd yolov5
    pip install -r requirements.txt
  2. 运行训练脚本

    bash 复制代码
    python train.py
  3. 运行主程序

    bash 复制代码
    python MainProgram.py

5. 关键代码解释

数据集配置文件 (data.yaml)
  • train, val, test: 数据集路径。
  • nc: 类别数量。
  • names: 类别名称。
训练脚本 (train.py)
  • YOLO('yolov8n.yaml'): 加载YOLOv8模型。
  • model.train(): 开始训练模型。
主程序 (MainProgram.py)
  • YOLO('runs/train/driver_fatigue/weights/best.pt'): 加载训练好的模型。
  • detect_image(), detect_video(), start_camera(): 分别处理图像、视频和摄像头检测。
  • show_image(): 显示检测结果。

通过以上步骤,tongxue 你就构建一个完整的驾驶员疲劳驾驶检测系统,并带有PyQt界面进行交互。

相关推荐
XiaoMu_00117 小时前
基于Django+Vue3+YOLO的智能气象检测系统
python·yolo·django
程序员柳1 天前
基于YOLOv8的车辆轨迹识别与目标检测研究分析软件源代码+详细文档
人工智能·yolo·目标检测
小胖墩有点瘦1 天前
【基于yolo和web的垃圾分类系统】
人工智能·python·yolo·flask·毕业设计·课程设计·垃圾分类
格林威1 天前
棱镜的技术加持:线扫相机如何同时拍RGB和SWIR?
人工智能·深度学习·数码相机·yolo·计算机视觉
大学生毕业题目1 天前
毕业项目推荐:83-基于yolov8/yolov5/yolo11的农作物杂草检测识别系统(Python+卷积神经网络)
人工智能·python·yolo·目标检测·cnn·pyqt·杂草识别
阿崽meitoufa2 天前
[水果目标检测5]AppleYOLO:基于深度OC-SORT的改进YOLOv8苹果产量估计方法
yolo
weixin_377634842 天前
【目标检测】特征理解与标注技巧
yolo·目标检测
笑脸惹桃花2 天前
50系显卡训练深度学习YOLO等算法报错的解决方法
深度学习·算法·yolo·torch·cuda
weixin_377634842 天前
【YOLO】数据增强bug
yolo·bug
youcans_2 天前
【医学影像 AI】YoloCurvSeg:仅需标注一个带噪骨架即可实现血管状曲线结构分割
人工智能·yolo·计算机视觉·分割·医学影像