SpringBoot集成Sharding-JDBC-5.3.0实现按月动态建表分表

Sharding-JDBC系列

1、Sharding-JDBC分库分表的基本使用

2、Sharding-JDBC分库分表之SpringBoot分片策略

3、Sharding-JDBC分库分表之SpringBoot主从配置

4、SpringBoot集成Sharding-JDBC-5.3.0分库分表

5、SpringBoot集成Sharding-JDBC-5.3.0实现按月动态建表分表

前言

随着业务量的递增,项目产生海量的数据,在某些场景中,需要将数据按月存储。本篇基于Sharding-JDBC 5.3.0,分享一下按月自动建表以及分表的实现。

准备工作

创建一个数据库,创建一张表,表名为tb_order。该表作为基准表。

引入依赖

XML 复制代码
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>2.7.1</version>
        <relativePath/> <!-- lookup parent from repository -->
    </parent>
    <modelVersion>4.0.0</modelVersion>

    <artifactId>Sharding-JDBC-demo2</artifactId>

    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>com.baomidou</groupId>
            <artifactId>mybatis-plus-boot-starter</artifactId>
            <version>3.4.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.shardingsphere</groupId>
            <artifactId>shardingsphere-jdbc-core</artifactId>
            <version>5.3.0</version>
        </dependency>
        <dependency>
            <groupId>org.yaml</groupId>
            <artifactId>snakeyaml</artifactId>
            <version>1.33</version>
        </dependency>
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>8.0.28</version>
        </dependency>
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>druid</artifactId>
            <version>1.2.6</version>
        </dependency>
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <version>1.18.22</version>
            <scope>compile</scope>
        </dependency>
        <!--<dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-devtools</artifactId>
            <optional>true</optional>
            <scope>runtime</scope>
        </dependency>-->
    </dependencies>

</project>

1)引入shardingsphere-jdbc-core 5.3.0 的版本;

2)项目中不要引入spring-boot-devtools,否则在调试启动时,会报错;

spring-boot-devtools 会在类路径上的文件发生更改时自动重启,方便开发调试。在项目部署时,通过 java -jar 启动项目时,会自动禁用开发工具。报错的原因下面说明。

分片规则配置

4.1 application.yml

Groovy 复制代码
server:
  port: 8080
spring:
  main:
    # 处理连接池冲突
    allow-bean-definition-overriding: true
  datasource:
    # shardingsphere5.3.0引入ShardingSphereDriver数据库驱动
    driver-class-name: org.apache.shardingsphere.driver.ShardingSphereDriver
    url: jdbc:shardingsphere:classpath:sharding.yml

指定分片规则的文件为sharding.yml。

4.2 sharding.yml

Groovy 复制代码
dataSources:
  order_ds:
    dataSourceClassName: com.zaxxer.hikari.HikariDataSource
    driverClassName: com.mysql.cj.jdbc.Driver
    url: jdbc:mysql://localhost:3306/shardingjdbctest?useUnicode=true&characterEncoding=utf8&serverTimezone=GMT%2B8&useSSL=false
    username: root
    password: 123456

rules:
- !SHARDING
  tables:
    tb_order: #逻辑表
      actualDataNodes: order_ds.tb_order  #表是自动创建
      keyGenerateStrategy: # 指定主键生成策略
        column: order_id
        keyGeneratorName: snowflake
      tableStrategy:
        standard: 
          shardingColumn: order_time   #分片键
          shardingAlgorithmName: custom-time-sharding
  shardingAlgorithms:  #分片算法
   custom-time-sharding:
     type: CLASS_BASED   #自定义类
     props:
       strategy: standard
       algorithmClassName: com.jingai.sharding.jdbc.algorithm.OrderTimeShardingAlgorithm  #分片算法
  keyGenerators:  # 主键生成器
    snowflake:
      type: SNOWFLAKE
props:
  sql-show: true  # 是否打印sql

1)配置真实表为tb_order,作为分表的表前缀;

2)配置分表策略为standard标准策略,以订单创建日期为分片键;

3)配置分表算法为自定义类OrderTimeShardingAlgorithm;

分片算法OrderTimeShardingAlgorithm

java 复制代码
package com.jingai.sharding.jdbc.algorithm;


@Slf4j
public class OrderTimeShardingAlgorithm implements StandardShardingAlgorithm<Date> {

    private static final DateFormat TABLE_SHARD_TIME_FORMAT = new SimpleDateFormat("yyyyMM");

    // 表分片符号。如:tb_order_202407
    private static final String TABLE_SPLIT_SYMBOL = "_";

    private Properties props;

    @Override
    public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> shardingValue) {
        String logicTableName = shardingValue.getLogicTableName();
        log.info("精准分片,逻辑表名:{},节点表名:{}", logicTableName, availableTargetNames);
        Date time = shardingValue.getValue();
        String result = logicTableName + TABLE_SPLIT_SYMBOL + TABLE_SHARD_TIME_FORMAT.format(time);
        // 在配置中,只配置了逻辑表名。如果只有一个,且是逻辑表名,说明需要获取所有表名
        initAvailableTargetNames(availableTargetNames, logicTableName);
        return getAndCreateShardingTable(logicTableName, result, availableTargetNames);
    }

    @Override
    public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> shardingValue) {
        String logicTableName = shardingValue.getLogicTableName();
        log.info("精准分片,逻辑表名:{},节点表名:{}", logicTableName, availableTargetNames);

        // 在配置中,只配置了逻辑表名。如果只有一个,且是逻辑表名,说明需要获取所有表名
        initAvailableTargetNames(availableTargetNames, logicTableName);

        Range<Date> valueRange = shardingValue.getValueRange();

        // 如果没有最大值或最小值,则全库扫描
        if(!valueRange.hasLowerBound() || !valueRange.hasUpperBound()) {
            return availableTargetNames;
        }

        Date min = valueRange.lowerEndpoint();
        Date max = valueRange.upperEndpoint();

        Set<String> rs = new HashSet<>();
        while (min.compareTo(max) <= 0) {
            String tableName = logicTableName + "_" + TABLE_SHARD_TIME_FORMAT.format(min);
            rs.add(tableName);
            min = DateUtils.addMonths(min, 1);
        }
        return getAndCreateShardingTable(logicTableName, rs, availableTargetNames);
    }

    private void initAvailableTargetNames(Collection<String> availableTargetNames, String logicTableName) {
        if(availableTargetNames.size() == 1 && availableTargetNames.contains(logicTableName)) {
            Set<String> allTableNameBySchema = ShardingAlgorithmUtil.getAllTableNameBySchema(logicTableName);
            availableTargetNames.clear();
            availableTargetNames.addAll(allTableNameBySchema);
        }
    }

    /**
     * 检查可用的真实表,如果表名不存在,则创建新表
     * @param logicTableName 逻辑表
     * @param resultTableNames 操作需要的真实表
     * @param availableTargetNames 可用的真实表
     * @return 分片的真实表
     */
    private List<String> getAndCreateShardingTable(String logicTableName, Set<String> resultTableNames, Collection<String> availableTargetNames) {
        return resultTableNames.stream().map(name -> getAndCreateShardingTable(logicTableName, name, availableTargetNames)).collect(Collectors.toList());
    }

    /**
     * 检查可用的真实表,如果表名不存在,则创建新表
     * @param logicTableName
     * @param resultTableName
     * @param availableTargetNames
     * @return
     */
    private String getAndCreateShardingTable(String logicTableName, String resultTableName, Collection<String> availableTargetNames) {
        if(availableTargetNames.contains(resultTableName)) {
            return resultTableName;
        }
        boolean rs = ShardingAlgorithmUtil.createShardingTable(logicTableName, resultTableName);
        if(rs) {
            availableTargetNames.add(resultTableName);
            return resultTableName;
        }
        return null;
    }

    @Override
    public Properties getProps() {
        return props;
    }

    @Override
    public void init(Properties properties) {
        this.props = properties;
    }
}

1)实现StandardShardingAlgorithm接口,重写doSharding()方法;

2)根据传入的时间分片值,解析出年月,和逻辑表组合,为实际操作的真实表;

3)如果当前的真实表不存在,则调用工具类ShardingAlgorithmUtil创建一个真实表;

工具类ShardingAlgorithmUtil

java 复制代码
package com.jingai.sharding.jdbc.util;

@Slf4j
public class ShardingAlgorithmUtil {

    // 表分片符号。如:tb_order_202407
    private static final String TABLE_SPLIT_SYMBOL = "_";

    // 配置的数据库源
    private volatile static Map<String, Map<String, Object>> dataSources = null;

    public static void init(String url) {
        Assert.hasText(url, "分片策略不能为空");
        log.info("数据源获取...");
        byte[] bytes = new ShardingSphereDriverURL(url).toConfigurationBytes();
        try {
            YamlRootConfiguration yamlRootConfiguration = YamlEngine.unmarshal(bytes, YamlRootConfiguration.class);
            dataSources = yamlRootConfiguration.getDataSources();
        } catch(Exception e) {
            e.printStackTrace();
            log.error("分片策略配置解析失败");
            throw new IllegalArgumentException("分片策略解析失败");
        }
    }

    /**
     * 获取所有真实表名
     */
    public static Set<String> getAllTableNameBySchema(String logicTableName) {
        Assert.notNull(dataSources, "分片策略配置未初始化");
        Set<String> rs = new HashSet<>();
        // 获取配置的数据源
        String startTable = logicTableName + TABLE_SPLIT_SYMBOL;
        for (Map<String, Object> dataSource : dataSources.values()) {
            try (Connection conn = DriverManager.getConnection(dataSource.get("url").toString(),
                    dataSource.get("username").toString(), dataSource.get("password").toString())){
                Statement statement = conn.createStatement();
                ResultSet resultSet = statement.executeQuery("show tables like '" + startTable + "%'");
                while (resultSet.next()) {
                    String tableName = resultSet.getString(1);
                    if(StringUtils.hasText(tableName) && tableName.replaceFirst(startTable, "").matches("\\d{6}")) {
                        rs.add(tableName);
                    }
                }
            } catch(Exception e) {
                e.printStackTrace();
                throw new IllegalArgumentException("数据库连接失败");
            }
        }
        return rs;
    }

    /**
     * 创建分表
     * @param logicTableName
     * @param resultTableName
     * @return
     */
    public static boolean createShardingTable(String logicTableName, String resultTableName) {
        synchronized (logicTableName.intern()) {
            for (Map<String, Object> dataSource : dataSources.values()) {
                try (Connection conn = DriverManager.getConnection(dataSource.get("url").toString(),
                        dataSource.get("username").toString(), dataSource.get("password").toString())){
                    Statement statement = conn.createStatement();
                    log.info("创建{}表", resultTableName);
                    statement.execute("create table if not exists `" + resultTableName + "` like `" + logicTableName + "`;");
                } catch(Exception e) {
                    e.printStackTrace();
                    throw new IllegalArgumentException("数据库连接失败");
                }
            }
            return true;
        }
    }

}

1)init(String url) 初始化方法,通过传入的url(application.yml中配置的spring.datasource.url),解析分片配置文件,得到配置的datasources信息;

2)getAllTableNameBySchema(String logicTableName),通过传入的逻辑表(配置中的tb_order),结合配置的datasources信息,创建连接,从数据库中获取表名以tb_order为前缀的表。即数据库中的真实表;

真实表只需从主库中获取即可,此处可以完善。

3)createShardingTable(),结合配置的datasources信息,创建连接,创建真实表;

初始化类

java 复制代码
package com.jingai.sharding.jdbc.listener;

@Component
@Slf4j
public class ShardingInitRunner implements InitializingBean {

    @Value("${spring.datasource.url}")
    private String url;

    @Override
    public void afterPropertiesSet() throws Exception {
        log.info("sharding初始化...");
        ShardingAlgorithmUtil.init(url);
    }

}

该类获取spring.datasource.url的配置值,在初始化方法中,调用ShardingAlgorithmUtil.init(url),初始化ShardingAlgorithmUtil中的datasource值。

1)如果引入了spring-boot-devtools依赖,开启开发工具。项目启动的时候,ShardingAlgorithmUtil类的类加载器为devtools包下的RestartClassLoader,并执行了初始化,获取了datasources;

2)在分片算法OrderTimeShardingAlgorithm的类加载器为AppClassLoader,OrderTimeShardingAlgorithm中调用ShardingAlgorithmUtil时,会用AppClassLoader重新加载一次ShardingAlgorithmUtil,此时的datasources为null;

3)此时执行ShardingAlgorithmUtil操作数据库时,会报空指针;

实体类

java 复制代码
package com.jingai.sharing.jdbc.entity;

@Data
@ToString
@TableName("tb_order")
public class OrderEntity {

    private long orderId;
    private long memberId;
    private float totalPrice;
    private String status;
    private Date orderTime;

}

在实体类中,@TableName指定配置中的逻辑表。

Mapper类

java 复制代码
package com.jingai.sharing.jdbc.dao;

public interface OrderMapper extends BaseMapper<OrderEntity> {

    @Insert("insert into tb_order(member_id, total_price, status, order_time) values " +
            "(#{memberId}, #{totalPrice}, #{status}, #{orderTime})")
    @Options(useGeneratedKeys = true, keyProperty = "orderId")
    int insert2(OrderEntity order);
}

在4.2的配置中,通过key-generator设置了逻辑表的主键生成策略为雪花算法。当进行数据插入时,需要编写新的插入接口,不能直接使用Mybatis-plus中的insert()接口。因为在默认的insert()接口中,实体对象的orderId为0,不会走配置的雪花算法。

Service类

java 复制代码
package com.jingai.sharing.jdbc.service;


@Service
public class OrderService extends ServiceImpl<OrderMapper, OrderEntity> {

    @Resource
    private OrderMapper orderMapper;

    public long insert2(OrderEntity order) {
        int rs = orderMapper.insert2(order);
        return rs > 0 ? order.getOrderId() : 0;
    }

}

为了便于测试,此处省略了Service的接口类。

Controller类

java 复制代码
@RestController
public class OrderController {

    @Resource
    private OrderService orderService;

    @RequestMapping("order")
    public String order(OrderEntity order) {
        order.setOrderTime(new Date());
        long insert = orderService.insert2(order);
        return insert > 0 ? "success" : "fail";
    }

    @RequestMapping("list")
    public List<OrderEntity> list() {
        return orderService.list();
    }

}

小结

以上为本篇分享的全部内容。以下做一个小结:

1)创建一个基准表tb_order;

2)配置分片规则:标准策略、以订单时间为分片键、自定义分片算法;

3)在分片算法中,根据分片键的值日期值,找到对应月份的表。如果真实表不存在,则创建;

关于本篇内容你有什么自己的想法或独到见解,欢迎在评论区一起交流探讨下吧。

相关推荐
JingAi_jia9176 小时前
【源码】Sharding-JDBC源码分析之SQL路由及SingleSQLRouter单表路由
分库分表·分片路由·springboot分库分表·shardingjdbc源码·spring分库分表·singlesqlrouter·单表路由
JingAi_jia9171 个月前
【源码】Sharding-JDBC源码分析之Sql解析的原理
分库分表·sharding-jdbc·1024程序员节·sharding jdbc·antlr·springboot分库分表·sql解析原理·mysqlstatement
Dylanioucn1 个月前
【分布式微服务云原生】深入探究:多分片键下的分库分表策略
数据库·分布式·微服务·云原生·分库分表
阿维的博客日记2 个月前
图文并茂解释水平分表,垂直分表,水平分库,垂直分库
数据库·分库分表
JingAi_jia9172 个月前
【源码】Sharding-JDBC源码分析之ContextManager创建中ShardingSphereDatabase的创建原理
database·分库分表·sharding-jdbc·sharding jdbc·springboot分库分表·shardingjdbc源码
JingAi_jia9173 个月前
【源码】Sharding-JDBC源码分析之ContextManager创建中mode分片配置信息的持久化存储的原理
sharding jdbc·sharding jdbc原理·分库分表原理·分片信息持久化存储·sharding jdbc源码
wuweijie@apache.org3 个月前
IntelliJ IDEA 集成 ShardingSphere-JDBC 访问分库分表
ide·intellij-idea·shardingsphere·分库分表
JingAi_jia9173 个月前
【源码】Sharding-JDBC源码分析之Yaml分片配置原理(一)
分库分表·sharding-jdbc·sharding jdbc·springboot分库分表·分库分表配置·分库分表配置原理
gis分享者3 个月前
分库分表的使用场景和中间件
分库分表
jupiter_8883 个月前
mysql在4核16G 500G的服务器上单表数据量多大合适
mysql·分库分表