Sharding-JDBC系列
2、Sharding-JDBC分库分表之SpringBoot分片策略
3、Sharding-JDBC分库分表之SpringBoot主从配置
4、SpringBoot集成Sharding-JDBC-5.3.0分库分表
5、SpringBoot集成Sharding-JDBC-5.3.0实现按月动态建表分表
前言
随着业务量的递增,项目产生海量的数据,在某些场景中,需要将数据按月存储。本篇基于Sharding-JDBC 5.3.0,分享一下按月自动建表以及分表的实现。
准备工作
创建一个数据库,创建一张表,表名为tb_order。该表作为基准表。
引入依赖
XML
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.7.1</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>
<modelVersion>4.0.0</modelVersion>
<artifactId>Sharding-JDBC-demo2</artifactId>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>com.baomidou</groupId>
<artifactId>mybatis-plus-boot-starter</artifactId>
<version>3.4.1</version>
</dependency>
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core</artifactId>
<version>5.3.0</version>
</dependency>
<dependency>
<groupId>org.yaml</groupId>
<artifactId>snakeyaml</artifactId>
<version>1.33</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>8.0.28</version>
</dependency>
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>druid</artifactId>
<version>1.2.6</version>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.22</version>
<scope>compile</scope>
</dependency>
<!--<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-devtools</artifactId>
<optional>true</optional>
<scope>runtime</scope>
</dependency>-->
</dependencies>
</project>
1)引入shardingsphere-jdbc-core 5.3.0 的版本;
2)项目中不要引入spring-boot-devtools,否则在调试启动时,会报错;
spring-boot-devtools 会在类路径上的文件发生更改时自动重启,方便开发调试。在项目部署时,通过 java -jar 启动项目时,会自动禁用开发工具。报错的原因下面说明。
分片规则配置
4.1 application.yml
Groovy
server:
port: 8080
spring:
main:
# 处理连接池冲突
allow-bean-definition-overriding: true
datasource:
# shardingsphere5.3.0引入ShardingSphereDriver数据库驱动
driver-class-name: org.apache.shardingsphere.driver.ShardingSphereDriver
url: jdbc:shardingsphere:classpath:sharding.yml
指定分片规则的文件为sharding.yml。
4.2 sharding.yml
Groovy
dataSources:
order_ds:
dataSourceClassName: com.zaxxer.hikari.HikariDataSource
driverClassName: com.mysql.cj.jdbc.Driver
url: jdbc:mysql://localhost:3306/shardingjdbctest?useUnicode=true&characterEncoding=utf8&serverTimezone=GMT%2B8&useSSL=false
username: root
password: 123456
rules:
- !SHARDING
tables:
tb_order: #逻辑表
actualDataNodes: order_ds.tb_order #表是自动创建
keyGenerateStrategy: # 指定主键生成策略
column: order_id
keyGeneratorName: snowflake
tableStrategy:
standard:
shardingColumn: order_time #分片键
shardingAlgorithmName: custom-time-sharding
shardingAlgorithms: #分片算法
custom-time-sharding:
type: CLASS_BASED #自定义类
props:
strategy: standard
algorithmClassName: com.jingai.sharding.jdbc.algorithm.OrderTimeShardingAlgorithm #分片算法
keyGenerators: # 主键生成器
snowflake:
type: SNOWFLAKE
props:
sql-show: true # 是否打印sql
1)配置真实表为tb_order,作为分表的表前缀;
2)配置分表策略为standard标准策略,以订单创建日期为分片键;
3)配置分表算法为自定义类OrderTimeShardingAlgorithm;
分片算法OrderTimeShardingAlgorithm
java
package com.jingai.sharding.jdbc.algorithm;
@Slf4j
public class OrderTimeShardingAlgorithm implements StandardShardingAlgorithm<Date> {
private static final DateFormat TABLE_SHARD_TIME_FORMAT = new SimpleDateFormat("yyyyMM");
// 表分片符号。如:tb_order_202407
private static final String TABLE_SPLIT_SYMBOL = "_";
private Properties props;
@Override
public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> shardingValue) {
String logicTableName = shardingValue.getLogicTableName();
log.info("精准分片,逻辑表名:{},节点表名:{}", logicTableName, availableTargetNames);
Date time = shardingValue.getValue();
String result = logicTableName + TABLE_SPLIT_SYMBOL + TABLE_SHARD_TIME_FORMAT.format(time);
// 在配置中,只配置了逻辑表名。如果只有一个,且是逻辑表名,说明需要获取所有表名
initAvailableTargetNames(availableTargetNames, logicTableName);
return getAndCreateShardingTable(logicTableName, result, availableTargetNames);
}
@Override
public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> shardingValue) {
String logicTableName = shardingValue.getLogicTableName();
log.info("精准分片,逻辑表名:{},节点表名:{}", logicTableName, availableTargetNames);
// 在配置中,只配置了逻辑表名。如果只有一个,且是逻辑表名,说明需要获取所有表名
initAvailableTargetNames(availableTargetNames, logicTableName);
Range<Date> valueRange = shardingValue.getValueRange();
// 如果没有最大值或最小值,则全库扫描
if(!valueRange.hasLowerBound() || !valueRange.hasUpperBound()) {
return availableTargetNames;
}
Date min = valueRange.lowerEndpoint();
Date max = valueRange.upperEndpoint();
Set<String> rs = new HashSet<>();
while (min.compareTo(max) <= 0) {
String tableName = logicTableName + "_" + TABLE_SHARD_TIME_FORMAT.format(min);
rs.add(tableName);
min = DateUtils.addMonths(min, 1);
}
return getAndCreateShardingTable(logicTableName, rs, availableTargetNames);
}
private void initAvailableTargetNames(Collection<String> availableTargetNames, String logicTableName) {
if(availableTargetNames.size() == 1 && availableTargetNames.contains(logicTableName)) {
Set<String> allTableNameBySchema = ShardingAlgorithmUtil.getAllTableNameBySchema(logicTableName);
availableTargetNames.clear();
availableTargetNames.addAll(allTableNameBySchema);
}
}
/**
* 检查可用的真实表,如果表名不存在,则创建新表
* @param logicTableName 逻辑表
* @param resultTableNames 操作需要的真实表
* @param availableTargetNames 可用的真实表
* @return 分片的真实表
*/
private List<String> getAndCreateShardingTable(String logicTableName, Set<String> resultTableNames, Collection<String> availableTargetNames) {
return resultTableNames.stream().map(name -> getAndCreateShardingTable(logicTableName, name, availableTargetNames)).collect(Collectors.toList());
}
/**
* 检查可用的真实表,如果表名不存在,则创建新表
* @param logicTableName
* @param resultTableName
* @param availableTargetNames
* @return
*/
private String getAndCreateShardingTable(String logicTableName, String resultTableName, Collection<String> availableTargetNames) {
if(availableTargetNames.contains(resultTableName)) {
return resultTableName;
}
boolean rs = ShardingAlgorithmUtil.createShardingTable(logicTableName, resultTableName);
if(rs) {
availableTargetNames.add(resultTableName);
return resultTableName;
}
return null;
}
@Override
public Properties getProps() {
return props;
}
@Override
public void init(Properties properties) {
this.props = properties;
}
}
1)实现StandardShardingAlgorithm接口,重写doSharding()方法;
2)根据传入的时间分片值,解析出年月,和逻辑表组合,为实际操作的真实表;
3)如果当前的真实表不存在,则调用工具类ShardingAlgorithmUtil创建一个真实表;
工具类ShardingAlgorithmUtil
java
package com.jingai.sharding.jdbc.util;
@Slf4j
public class ShardingAlgorithmUtil {
// 表分片符号。如:tb_order_202407
private static final String TABLE_SPLIT_SYMBOL = "_";
// 配置的数据库源
private volatile static Map<String, Map<String, Object>> dataSources = null;
public static void init(String url) {
Assert.hasText(url, "分片策略不能为空");
log.info("数据源获取...");
byte[] bytes = new ShardingSphereDriverURL(url).toConfigurationBytes();
try {
YamlRootConfiguration yamlRootConfiguration = YamlEngine.unmarshal(bytes, YamlRootConfiguration.class);
dataSources = yamlRootConfiguration.getDataSources();
} catch(Exception e) {
e.printStackTrace();
log.error("分片策略配置解析失败");
throw new IllegalArgumentException("分片策略解析失败");
}
}
/**
* 获取所有真实表名
*/
public static Set<String> getAllTableNameBySchema(String logicTableName) {
Assert.notNull(dataSources, "分片策略配置未初始化");
Set<String> rs = new HashSet<>();
// 获取配置的数据源
String startTable = logicTableName + TABLE_SPLIT_SYMBOL;
for (Map<String, Object> dataSource : dataSources.values()) {
try (Connection conn = DriverManager.getConnection(dataSource.get("url").toString(),
dataSource.get("username").toString(), dataSource.get("password").toString())){
Statement statement = conn.createStatement();
ResultSet resultSet = statement.executeQuery("show tables like '" + startTable + "%'");
while (resultSet.next()) {
String tableName = resultSet.getString(1);
if(StringUtils.hasText(tableName) && tableName.replaceFirst(startTable, "").matches("\\d{6}")) {
rs.add(tableName);
}
}
} catch(Exception e) {
e.printStackTrace();
throw new IllegalArgumentException("数据库连接失败");
}
}
return rs;
}
/**
* 创建分表
* @param logicTableName
* @param resultTableName
* @return
*/
public static boolean createShardingTable(String logicTableName, String resultTableName) {
synchronized (logicTableName.intern()) {
for (Map<String, Object> dataSource : dataSources.values()) {
try (Connection conn = DriverManager.getConnection(dataSource.get("url").toString(),
dataSource.get("username").toString(), dataSource.get("password").toString())){
Statement statement = conn.createStatement();
log.info("创建{}表", resultTableName);
statement.execute("create table if not exists `" + resultTableName + "` like `" + logicTableName + "`;");
} catch(Exception e) {
e.printStackTrace();
throw new IllegalArgumentException("数据库连接失败");
}
}
return true;
}
}
}
1)init(String url) 初始化方法,通过传入的url(application.yml中配置的spring.datasource.url),解析分片配置文件,得到配置的datasources信息;
2)getAllTableNameBySchema(String logicTableName),通过传入的逻辑表(配置中的tb_order),结合配置的datasources信息,创建连接,从数据库中获取表名以tb_order为前缀的表。即数据库中的真实表;
真实表只需从主库中获取即可,此处可以完善。
3)createShardingTable(),结合配置的datasources信息,创建连接,创建真实表;
初始化类
java
package com.jingai.sharding.jdbc.listener;
@Component
@Slf4j
public class ShardingInitRunner implements InitializingBean {
@Value("${spring.datasource.url}")
private String url;
@Override
public void afterPropertiesSet() throws Exception {
log.info("sharding初始化...");
ShardingAlgorithmUtil.init(url);
}
}
该类获取spring.datasource.url的配置值,在初始化方法中,调用ShardingAlgorithmUtil.init(url),初始化ShardingAlgorithmUtil中的datasource值。
1)如果引入了spring-boot-devtools依赖,开启开发工具。项目启动的时候,ShardingAlgorithmUtil类的类加载器为devtools包下的RestartClassLoader,并执行了初始化,获取了datasources;
2)在分片算法OrderTimeShardingAlgorithm的类加载器为AppClassLoader,OrderTimeShardingAlgorithm中调用ShardingAlgorithmUtil时,会用AppClassLoader重新加载一次ShardingAlgorithmUtil,此时的datasources为null;
3)此时执行ShardingAlgorithmUtil操作数据库时,会报空指针;
实体类
java
package com.jingai.sharing.jdbc.entity;
@Data
@ToString
@TableName("tb_order")
public class OrderEntity {
private long orderId;
private long memberId;
private float totalPrice;
private String status;
private Date orderTime;
}
在实体类中,@TableName指定配置中的逻辑表。
Mapper类
java
package com.jingai.sharing.jdbc.dao;
public interface OrderMapper extends BaseMapper<OrderEntity> {
@Insert("insert into tb_order(member_id, total_price, status, order_time) values " +
"(#{memberId}, #{totalPrice}, #{status}, #{orderTime})")
@Options(useGeneratedKeys = true, keyProperty = "orderId")
int insert2(OrderEntity order);
}
在4.2的配置中,通过key-generator设置了逻辑表的主键生成策略为雪花算法。当进行数据插入时,需要编写新的插入接口,不能直接使用Mybatis-plus中的insert()接口。因为在默认的insert()接口中,实体对象的orderId为0,不会走配置的雪花算法。
Service类
java
package com.jingai.sharing.jdbc.service;
@Service
public class OrderService extends ServiceImpl<OrderMapper, OrderEntity> {
@Resource
private OrderMapper orderMapper;
public long insert2(OrderEntity order) {
int rs = orderMapper.insert2(order);
return rs > 0 ? order.getOrderId() : 0;
}
}
为了便于测试,此处省略了Service的接口类。
Controller类
java
@RestController
public class OrderController {
@Resource
private OrderService orderService;
@RequestMapping("order")
public String order(OrderEntity order) {
order.setOrderTime(new Date());
long insert = orderService.insert2(order);
return insert > 0 ? "success" : "fail";
}
@RequestMapping("list")
public List<OrderEntity> list() {
return orderService.list();
}
}
小结
以上为本篇分享的全部内容。以下做一个小结:
1)创建一个基准表tb_order;
2)配置分片规则:标准策略、以订单时间为分片键、自定义分片算法;
3)在分片算法中,根据分片键的值日期值,找到对应月份的表。如果真实表不存在,则创建;
关于本篇内容你有什么自己的想法或独到见解,欢迎在评论区一起交流探讨下吧。