使用shedlock实现分布式互斥执行

前言

前序章节:springboot基础(82):分布式定时任务解决方案shedlock

如果你不清楚shedlock,建议先阅读前序章节,再来查看本文。

如果我们不在spring环境下,如何使用shedlock实现分布式互斥执行?

我们可以使用shedlock为我们提供的DefaultLockingTaskExecutor来实现手动调用。

示例

void executeWithLock(@NonNull Runnable var1, @NonNull LockConfiguration var2)

java 复制代码
  @GetMapping("/testRunnable")
    public R testRunnable(HttpServletRequest request) {
        log.info("进入方法");
        String name = request.getParameter("name");
        LockingTaskExecutor executor = new DefaultLockingTaskExecutor(lockProvider);
        Instant now = Instant.now();
        try {
            executor.executeWithLock(new Runnable() {
                @Override
                public void run() {
                    log.info("执行");
                    helloService.helloCn(name);
                }
            }, new LockConfiguration(now, "testRunnable", Duration.ofSeconds(30), Duration.ofSeconds(5)));
            log.info("end");
            return R.ok("success", null);
        } catch (Throwable throwable) {
            throwable.printStackTrace();
        }
        return R.fail("fail");
    }

LockingTaskExecutor.TaskResult executeWithLock(@NonNull LockingTaskExecutor.TaskWithResult task, @NonNull LockConfiguration lockConfig)

利用此API,我们可以让一个方法不能在一个时间只能有一次实例在执行,排斥调用者,且其它调用者的调用失败,这是与分布式锁不一样的地方。

java 复制代码
 @GetMapping("/testTaskWithResult")
    public R testTaskWithResult(HttpServletRequest request) {
        log.info("进入方法");
        String name = request.getParameter("name");
        LockingTaskExecutor executor = new DefaultLockingTaskExecutor(lockProvider);
        Instant now = Instant.now();
        try {
            LockingTaskExecutor.TaskResult taskResult = executor.executeWithLock(new LockingTaskExecutor.TaskWithResult() {
                @Override
                public Object call() throws Throwable {
                    log.info("执行");
                    return helloService.helloCn(name);
                }
            }, new LockConfiguration(now, "testTaskWithResult", Duration.ofSeconds(30), Duration.ofSeconds(5)));
            boolean flag = taskResult.wasExecuted();
            log.info("end");
            return R.ok("任务是否被执行:" + flag, taskResult.getResult());
        } catch (Throwable throwable) {
            throwable.printStackTrace();
        }
        return R.fail("fail");
    }

传送门

https://github.com/lukas-krecan/ShedLock

相关推荐
g***B7383 小时前
后端在分布式中的服务配置
分布式
n***i954 小时前
后端在分布式缓存中的一致性哈希
分布式·缓存·哈希算法
O***p6044 小时前
后端在分布式中的服务治理
分布式
F***c3259 小时前
PHP在微服务中的分布式跟踪
分布式·微服务·php
深蓝电商API12 小时前
Scrapy + Scrapy-Redis 分布式爬虫集群部署(2025 最新版)
redis·分布式·scrapy
Sinowintop13 小时前
易连EDI-EasyLink无缝集成之消息队列Kafka
分布式·网络协议·kafka·集成·国产化·as2·国产edi
玩转以太网13 小时前
W55MH32 单芯片以太网方案:破解分布式 IO 三大痛点
分布式·物联网
小坏讲微服务15 小时前
Spring Cloud Alibaba 整合 Scala 教程完整使用
java·开发语言·分布式·spring cloud·sentinel·scala·后端开发
pale_moonlight15 小时前
九、Spark基础环境实战((上)虚拟机安装Scala与windows端安装Scala)
大数据·分布式·spark
BD_Marathon16 小时前
【Zookeeper】CAP理论——CAP介绍
linux·分布式·zookeeper