【无线通信】射频杂散(RF Spurious Emissions)

射频杂散(RF Spurious Emissions)是指在无线通信系统中,除了在指定频率范围内的预期信号之外,任何不需要的或非预期的射频信号。这些杂散信号可能会干扰其他通信系统,降低系统性能,并违反无线电通信法规。射频杂散通常包括谐波、次谐波、互调产物和其他非线性失真所产生的信号。

射频杂散的来源

  1. 非线性器件:如功率放大器、混频器等在工作时,由于非线性特性会产生谐波和互调产物。
  2. 滤波器:实际滤波器不能完全消除所有不需要的频率分量,可能会有残余杂散。
  3. 电源噪声:不稳定或有纹波的电源会引入噪声信号。
  4. 电磁干扰(EMI):外部电磁场的干扰可能通过天线、导线等路径耦合进入系统。

杂散的分类

  1. 谐波:信号的整数倍频率成分,如二次谐波、三次谐波等。
  2. 次谐波:信号的分数倍频率成分,通常由混频器等器件引起。
  3. 互调产物:多个信号在非线性器件中混合后产生的频率成分,如二阶、三阶互调产物。
  4. 寄生信号:设备内部由于器件特性或设计缺陷产生的非预期信号。

测量和评估

测量射频杂散通常需要使用频谱分析仪,通过测量设备输出信号的频谱,确定杂散的频率和功率。评估杂散时,需要考虑以下几点:

  1. 频率范围:测量需要覆盖规定的频率范围,通常包括载波频率附近和更高的频率范围。
  2. 带宽:设置适当的分辨率带宽(RBW)和视频带宽(VBW)以准确测量杂散信号。
  3. 测量环境:在屏蔽环境中进行测量,以减少外部干扰的影响。
  4. 标准和法规:依据相应的通信标准和法规(如FCC、ETSI等)进行评估,确保杂散信号在规定的限值以内。

降低射频杂散的方法

  1. 滤波器:在发射和接收链路中使用高品质的滤波器来抑制不需要的频率分量。
  2. 线性化技术:采用前馈、反馈等线性化技术降低放大器的非线性失真。
  3. 屏蔽和接地:改善电路板布局,使用屏蔽和接地技术减少电磁干扰。
  4. 电源管理:使用低噪声电源,并进行适当的电源滤波。
  5. 元器件选择:选择低杂散特性的元器件,优化器件工作点。

示例

假设我们有一个无线发射器,工作在900 MHz频率上。我们可以使用频谱分析仪来测量其输出信号,以评估其射频杂散。

频谱分析仪测量步骤
  1. 连接设备:将发射器的输出连接到频谱分析仪的输入端。
  2. 设置参数:设置中心频率为900 MHz,扫频范围从0到3 GHz,分辨率带宽(RBW)为10 kHz。
  3. 启动测量:启动频谱分析仪,记录在900 MHz附近及其他频率上的信号强度。
  4. 分析结果:观察频谱图,确定谐波、次谐波和其他杂散信号的位置和强度。

通过这些步骤,我们可以评估发射器的射频杂散性能,并根据测量结果进行必要的改进。

总之,射频杂散是无线通信系统中需要关注的重要问题,通过合理的设计和优化,可以有效降低杂散信号,提高系统的整体性能和可靠性。

相关推荐
无名3871 天前
测试 kamailio v6.0.5 的 nats 模块(预处理)
通信
Trouvaille ~1 天前
【Linux】网络编程基础(二):数据封装与网络传输流程
linux·运维·服务器·网络·c++·tcp/ip·通信
百锦再2 天前
《C#上位机开发从门外到门内》2-7:网络通信(TCP/IP、UDP)
tcp/ip·udp·c#·嵌入式·上位机·通信·下位机
一路向北⁢2 天前
Spring Boot 3 整合 SSE (Server-Sent Events) 企业级最佳实践(一)
java·spring boot·后端·sse·通信
一路向北⁢3 天前
Spring Boot 3 整合 SSE (Server-Sent Events) 企业级最佳实践(二)
java·数据库·spring boot·sse·通信
【 STM32开发 】3 天前
【STM32 + CubeMX】 CAN 通信
stm32·cubemx·can·hal·通信·f407
xixixi777773 天前
基于零信任架构的通信
大数据·人工智能·架构·零信任·通信·个人隐私
Deepoch5 天前
Deepoc-M模型:以数学赋能,解锁通信产业“普惠创新”新可能
科技·5g·数学建模·通信·deepoc·deepoc数学大模型
xixixi777776 天前
2026 年 1 月 30 日 AI + 通信 + 安全前沿信息集成
算法·安全·ai·大模型·安全威胁分析·信息与通信·通信
xixixi777776 天前
无网通信——不依赖传统集中式蜂窝网络(如4G/5G基站)或互联网基础设施(如光纤、路由器) 的通信方式
网络·路由器·数据安全·通信·卫星通信·无网通信