Windows 电脑部署 ollama3 并安装模型

Windows 电脑部署 ollama3 并安装模型

部署中为了尽可能减少对本地环境的污染,使用 Docker 安装!

github: https://github.com/ollama/ollama

准备部署文件

yml 复制代码
version: '3.8'

services:
   ollama:
     volumes:
       - ./models:/root/.ollama  # 将本地文件夹挂载到容器中的 /root/.ollama 目录 (模型下载位置)
     container_name: ollama
     pull_policy: always
     tty: true
     restart: unless-stopped
     image: ollama/ollama:latest
     ports:
       - 11434:11434  # Ollama API 端口

   open-webui:
     build:
       context: .
       args:
         OLLAMA_BASE_URL: '/ollama'
       dockerfile: Dockerfile
     image: ghcr.io/open-webui/open-webui:main
     container_name: open-webui
     volumes:
       - ./open-webui:/app/backend/data  # 前端页面数据挂载位置
     depends_on:
       - ollama
     ports:
       - ${OPEN_WEBUI_PORT-3005}:8080
     environment:
       - 'OLLAMA_BASE_URL=http://ollama:11434'
       - 'WEBUI_SECRET_KEY='
     extra_hosts:
       - host.docker.internal:host-gateway
     restart: unless-stopped

之后使用 docker compose up -d 等待一段时间之后,docker images pull 成功。即可执行下一步。

下载 LLM 模型

LLM 模型参考:

Model Parameters Size Download
Llama 3 8B 4.7GB ollama run llama3
qwen 4b 2.3G ollama run qwen:4b
Llama 3 70B 40GB ollama run llama3:70b
Phi-3 3,8B 2.3GB ollama run phi3
Mistral 7B 4.1GB ollama run mistral
Neural Chat 7B 4.1GB ollama run neural-chat
Starling 7B 4.1GB ollama run starling-lm
Code Llama 7B 3.8GB ollama run codellama
Llama 2 Uncensored 7B 3.8GB ollama run llama2-uncensored
LLaVA 7B 4.5GB ollama run llava
Gemma 2B 1.4GB ollama run gemma:2b
Gemma 7B 4.8GB ollama run gemma:7b
Solar 10.7B 6.1GB ollama run solar

这里选择最小体积且最好用的模型: llama3:4b 模型,qwen:4b 模型质量很差。

shell 复制代码
ollama3 run llama3

成功之后会看到下面这样:

shell 复制代码
root@c5e5ff20a533:/# ollama run llama3
pulling manifest 
pulling 6a0746a1ec1a... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████████████████████▏ 4.7 GB                         
pulling 4fa551d4f938... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████████████████████▏  12 KB                         
pulling 8ab4849b038c... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████████████████████▏  254 B                         
pulling 577073ffcc6c... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████████████████████▏  110 B                         
pulling 3f8eb4da87fa... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████████████████████▏  485 B                         
verifying sha256 digest 
writing manifest 
removing any unused layers 
success 
>>> 你好
💖 你好!我很高兴地看到你的消息! 😊

>>> 你能介绍下自己吗
😊 I'd be happy to introduce myself.

My name is LLaMA, and I'm a large language model trained by Meta AI. I'm a computer program designed to understand and generate human-like text, so we can have 
conversations like this one! 🤖

I was trained on a massive dataset of text from the internet, which allows me to learn about various topics, including history, science, culture, and more. This 
training enables me to answer questions, provide information, and even engage in creative writing or storytelling.

As a conversational AI, my goal is to assist and entertain users like you. I'm designed to be helpful, friendly, and respectful, so please feel free to ask me 
anything or share your thoughts with me! 💬

下载后的模型将被挂载到在 ./models 文件中。

访问

上面已经介绍了一种访问方式,通过 run 的方式。下面介绍通过 web ui 和 api 的方式访问。

API

shell 复制代码
curl http://localhost:11434/api/generate -d '{
    "model":"llama3",
    "prompt": "请分别翻译成中文、韩文、日文 -> Meta Llama 3: The most capable openly available LLM to date",
    "stream": false
}'

curl http://localhost:11434/api/chat -d '{
  "model": "llama3",
  "messages": [
    {
      "role": "user",
      "content": "why is the sky blue?"
    }
  ],
  "stream": true
}'

Web ui

浏览器访问 localhost:3005即可。

相关推荐
tadus_zeng10 小时前
Windows C++ 排查死锁
c++·windows
EverestVIP10 小时前
VS中动态库(外部库)导出与使用
开发语言·c++·windows
抛物线.13 小时前
inhibitor_tool
windows
宋冠巡14 小时前
Windows安装Docker(Docker Desktop)
windows·docker·容器
淬渊阁15 小时前
windows技术基础知识
windows
niandb21 小时前
The Rust Programming Language 学习 (九)
windows·rust
virelin_Y.lin1 天前
系统与网络安全------Windows系统安全(1)
windows·安全·web安全·系统安全
电星托马斯1 天前
C++中顺序容器vector、list和deque的使用方法
linux·c语言·c++·windows·笔记·学习·程序人生
麻芝汤圆1 天前
使用 MapReduce 进行高效数据清洗:从理论到实践
大数据·linux·服务器·网络·数据库·windows·mapreduce
@郭小茶1 天前
windows部署docker
windows·docker·容器