scikit-learn中fit_transform会改变原始数据吗

在 Python 的 scikit-learn 库中,fit_transform 方法通常用于数据预处理阶段,比如在标准化、归一化、进行主成分分析(PCA)或其他转换时使用。这个方法同时执行 fit 方法和 transform 方法:

  • fit:计算训练数据的统计信息,如均值和标准差(对于标准化)、最小值和最大值(对于归一化)等,这是为了以后的数据转换做准备。
  • transform :根据 fit 阶段得到的统计信息,转换训练数据,使数据变换到指定的格式。

改变原始数据?

关于 fit_transform 是否改变原始数据,这取决于你的操作方式:

  • 不直接改变原始数据 :通常情况下,fit_transform 作用于原始数据的拷贝,不会直接修改传入的数据数组。它返回一个新的数组,其中的数据是转换后的结果。原始数据在物理上不会被改变,除非你显式地对原始数据赋值。

  • 示例

    python 复制代码
    from sklearn.preprocessing import StandardScaler
    import numpy as np
    
    data = np.array([[0, 0], [0, 0], [1, 1], [1, 1]])
    scaler = StandardScaler()
    transformed_data = scaler.fit_transform(data)
    
    print("Original data:")
    print(data)
    print("Transformed data:")
    print(transformed_data)

在这个例子中,transformed_data 包含了归一化后的数据,而 data 保持不变。如果你希望更新原始数据,你需要手动赋值:

python 复制代码
data = transformed_data

应用场景

在机器学习和数据科学的实际应用中,通常推荐不直接修改原始数据,而是保留一个未经修改的副本。这样做可以帮助你对照检查、错误排查和试验不同的数据预处理策略。使用 fit_transform 时,最好是在数据拷贝上操作,或者将转换后的数据保存到新的变量中。

总结来说,fit_transform 本身不会改变输入给它的原始数据,除非你进行了额外的赋值操作。这样的设计有助于保护数据不被意外修改,同时允许灵活的数据管理和处理。

相关推荐
KeKe_L1 天前
scikit-learn学习Day30
python·学习·scikit-learn
小鹿( ﹡ˆoˆ﹡ )2 天前
Scikit-learn:数据科学中的瑞士军刀
python·机器学习·scikit-learn
raylu6662 天前
基于Scikit-learn的多元线性回归模型构建与验证
机器学习·线性回归·scikit-learn
开出南方的花4 天前
深度学习-张量相关
人工智能·pytorch·深度学习·scikit-learn·张量
武子康4 天前
大数据-216 数据挖掘 机器学习理论 - KMeans 基于轮廓系数来选择 n_clusters
大数据·人工智能·机器学习·数据挖掘·回归·scikit-learn·kmeans
武子康5 天前
大数据-213 数据挖掘 机器学习理论 - KMeans Python 实现 距离计算函数 质心函数 聚类函数
大数据·人工智能·python·机器学习·数据挖掘·scikit-learn·kmeans
慕卿扬7 天前
基于python的机器学习(二)—— 使用Scikit-learn库
笔记·python·学习·机器学习·scikit-learn
小码贾7 天前
评估 机器学习 回归模型 的性能和准确度
人工智能·机器学习·回归·scikit-learn·性能评估
武子康7 天前
大数据-210 数据挖掘 机器学习理论 - 逻辑回归 scikit-learn 实现 penalty solver
大数据·人工智能·python·机器学习·数据挖掘·逻辑回归·scikit-learn
武子康8 天前
大数据-208 数据挖掘 机器学习理论 - 岭回归 和 Lasso 算法 原理
大数据·人工智能·机器学习·数据挖掘·scikit-learn