games101 作业3分析 详解bump mapping
代码分析
整体代码结构 其实变化还是不大 主要是引入了vertexshader(什么都没做) 与 fragmentshader(使用了不同的着色方法 直接用法线作为rgb 使用blingphong光照模型 纹理贴图 bumpmapping displacementmapping)
主要变化在光栅化部分 着色计算使用特定的fragmentshader
这里我之前写的代码有问题 boundingbox没有覆盖边界 导致第一次出来的牛牛不同的三角形之间有缝隙hhh
注意这里使用的w值不再是之前错误的1 而是真实深度 但是我感觉这里插值使用的公式还是没有矫正过的 不过整体影响不大
void rst::rasterizer::rasterize_triangle(const Triangle& t, const std::array<Eigen::Vector3f, 3>& view_pos)
{
//这里不要使用toVector4 会导致深度值直接赋值为1
auto v = t.v;
int XMin = std::min(std::min(v[0].x(), v[1].x()), v[2].x());
int XMax = std::max(std::max(v[0].x(), v[1].x()), v[2].x());
int YMin = std::min(std::min(v[0].y(), v[1].y()), v[2].y());
int YMax = std::max(std::max(v[0].y(), v[1].y()), v[2].y());
for (int x = XMin; x <= XMax; x++) {
for (int y = YMin; y <= YMax; y++) {
int index = get_index(x, y);
if (insideTriangle(x + 0.5, y + 0.5, t.v)) {
auto [alpha, beta, gamma] = computeBarycentric2D(x + 0.5, y + 0.5, t.v);
float Z = 1.0 / (alpha / v[0].w() + beta / v[1].w() + gamma / v[2].w());
float zp = alpha * v[0].z() / v[0].w() + beta * v[1].z() / v[1].w() + gamma * v[2].z() / v[2].w();
zp *= Z;
if (zp < depth_buf[index]) {
depth_buf[index] = zp;
auto interpolated_color = interpolate(alpha, beta, gamma, t.color[0], t.color[1], t.color[2], 1.0f);
auto interpolated_normal = interpolate(alpha, beta, gamma, t.normal[0], t.normal[1], t.normal[2], 1.0f);
auto interpolated_texcoords = interpolate(alpha, beta, gamma, t.tex_coords[0], t.tex_coords[1], t.tex_coords[2], 1.0f);
auto interpolated_shadingcoords = interpolate(alpha, beta, gamma, view_pos[0], view_pos[1], view_pos[2], 1.0f);
//frame_buf[index] = t.getColor();
fragment_shader_payload FragShader(interpolated_color, interpolated_normal.normalized(), interpolated_texcoords, texture ? &*texture : nullptr);
FragShader.view_pos = interpolated_shadingcoords;
auto pixel_color = fragment_shader(FragShader);
Vector2i point;
point << x, y;
set_pixel(point, pixel_color);
}
}
}
}
下面draw函数中还是有一些细节
比如透视除法 w分量保留了z值
用view_Pos来存储真实的世界坐标 因为光照计算必须是在三维空间中计算的 所以这里要存储
法线矫正 防止model矩阵中物体进行了非等比缩放
void rst::rasterizer::draw(std::vector<Triangle *> &TriangleList) {
float f1 = (50 - 0.1) / 2.0;
float f2 = (50 + 0.1) / 2.0;
Eigen::Matrix4f mvp = projection * view * model;
for (const auto& t:TriangleList)
{
Triangle newtri = *t;
//使用三维空间中的坐标获取着色点坐标
std::array<Eigen::Vector4f, 3> mm {
(view * model * t->v[0]),
(view * model * t->v[1]),
(view * model * t->v[2])
};
std::array<Eigen::Vector3f, 3> viewspace_pos;
std::transform(mm.begin(), mm.end(), viewspace_pos.begin(), [](auto& v) {
return v.template head<3>();
});
Eigen::Vector4f v[] = {
mvp * t->v[0],
mvp * t->v[1],
mvp * t->v[2]
};
//Homogeneous division
for (auto& vec : v) {
vec.x()/=vec.w();
vec.y()/=vec.w();
vec.z()/=vec.w();
}
//法线校正
Eigen::Matrix4f inv_trans = (view * model).inverse().transpose();
Eigen::Vector4f n[] = {
inv_trans * to_vec4(t->normal[0], 0.0f),
inv_trans * to_vec4(t->normal[1], 0.0f),
inv_trans * to_vec4(t->normal[2], 0.0f)
};
//Viewport transformation
for (auto & vert : v)
{
vert.x() = 0.5*width*(vert.x()+1.0);
vert.y() = 0.5*height*(vert.y()+1.0);
vert.z() = vert.z() * f1 + f2;
}
for (int i = 0; i < 3; ++i)
{
//screen space coordinates
newtri.setVertex(i, v[i]);
}
for (int i = 0; i < 3; ++i)
{
//view space normal
newtri.setNormal(i, n[i].head<3>());
}
newtri.setColor(0, 148,121.0,92.0);
newtri.setColor(1, 148,121.0,92.0);
newtri.setColor(2, 148,121.0,92.0);
// Also pass view space vertice position
rasterize_triangle(newtri, viewspace_pos);
}
}
理论分析
bling-phong模型 与 纹理映射的理论都比较简单 这里不再赘述
有关纹理寻址 与 纹理过大/过小的问题 大概会再写一篇 参考一下别的资料
重点分析一下 bumpmapping的理论
其实normal mapping 和bumpmapping 很像 Bump Mapping 使用高度图来扰动法线 Normal Mapping 使用法线贴图来直接定义表面法线 理论上normal mapping 能够实现更好的细节 这两者都是为了使用更少的三角形 来实现更多的细节:
不使用bump mapping
使用bump mapping
首先 可以参考一下learnopengl的资料:https://learnopengl-cn.github.io/05 Advanced Lighting/04 Normal Mapping/
简单总结一下: 为什么我们要使用切线空间来存储法线?
如果直接存储物体的法线信息 那么物体只要发生变化 我们的法线贴图就没办法使用了 但是在切线空间下存储 我们只要每次求出一个TBN矩阵 然后进行变换就可以将切线空间的法线转换到世界空间 然后计算光照了
关于TBN矩阵就是对应着切线空间的三个基向量 在世界空间中的坐标 这样进行空间转换
推导方面 需要求出切线 以及副切线 可以看看learnopengl中的推导 本次作业中切线的求解我没看太懂 感觉是做了个近似?
得到了TBN矩阵 如何使用:
我们直接使用TBN矩阵,这个矩阵可以把切线坐标空间的向量转换到世界坐标空间。因此我们把它传给片段着色器中,把通过采样得到的法线坐标左乘上TBN矩阵,转换到世界坐标空间中,这样所有法线和其他光照变量就在同一个坐标系中了。
这也是本次课程中的做法
现在唯一的问题就是我们如何求出这个法线坐标
而games101课程中介绍的就是我们如何求经过bump mapping得到的法线坐标
即经过高度图来扰动点的位置之后 利用偏导数来近似切线 进一步得到法线:
但其实这样也是一个近似的结果
pbr中的推导是这样的:
上述是点的位置发生了变化 d(u,v)代表着高度变化 n(u,v)是表面法线 本来应该是个标量 但是作业中用的是rgb形式的 所以要求它的范数
我们对上述求偏导实际的近似结果应该是:
作业中相当只使用了uv坐标的变化来近似 也是因为我们信息有限嘛
这里我们求得的其实是shading normal 而我们之前用的tbn中的n是surface normal 着色是计算我们要用高度扰动之后的位置以及法线(shading normal) 而高度扰动之后的位置计算 我们要使用surface normal来计算 这点很重要 我看到有些网上的答案计算是错误的
实际解决
注意所有的方向向量 都要归一化!
Eigen::Vector3f texture_fragment_shader(const fragment_shader_payload& payload)
{
Eigen::Vector3f return_color = {0, 0, 0};
if (payload.texture)
{
// TODO: Get the texture value at the texture coordinates of the current fragment
return_color = payload.texture->getColor(payload.tex_coords.x(), payload.tex_coords.y());
}
Eigen::Vector3f texture_color;
texture_color << return_color.x(), return_color.y(), return_color.z();
Eigen::Vector3f ka = Eigen::Vector3f(0.005, 0.005, 0.005);
Eigen::Vector3f kd = texture_color / 255.f;
Eigen::Vector3f ks = Eigen::Vector3f(0.7937, 0.7937, 0.7937);
auto l1 = light{{20, 20, 20}, {500, 500, 500}};
auto l2 = light{{-20, 20, 0}, {500, 500, 500}};
std::vector<light> lights = {l1, l2};
Eigen::Vector3f amb_light_intensity{10, 10, 10};
Eigen::Vector3f eye_pos{0, 0, 10};
float p = 150;
Eigen::Vector3f color = texture_color;
Eigen::Vector3f point = payload.view_pos;
Eigen::Vector3f normal = payload.normal;
Eigen::Vector3f result_color = {0, 0, 0};
for (auto& light : lights)
{
Eigen::Vector3f ambient_color = ka.cwiseProduct(amb_light_intensity);
double distance = (light.position - point).norm();
Eigen::Vector3f light_dir = (light.position - point).normalized();
Eigen::Vector3f diffuse_color = kd.cwiseProduct(light.intensity) / (distance * distance) * std::max(normal.normalized().dot(light_dir), 0.0f);
Eigen::Vector3f half_vector = (light_dir + (eye_pos - point).normalized()).normalized();
Eigen::Vector3f specular_color = ks.cwiseProduct(light.intensity) / (distance * distance) * std::pow(std::max(normal.normalized().dot(half_vector), 0.0f), p);
result_color += (ambient_color + diffuse_color + specular_color);
}
return result_color * 255.f;
}
Eigen::Vector3f phong_fragment_shader(const fragment_shader_payload& payload)
{
Eigen::Vector3f ka = Eigen::Vector3f(0.005, 0.005, 0.005);
Eigen::Vector3f kd = payload.color;
Eigen::Vector3f ks = Eigen::Vector3f(0.7937, 0.7937, 0.7937);
auto l1 = light{{20, 20, 20}, {500, 500, 500}};
auto l2 = light{{-20, 20, 0}, {500, 500, 500}};
std::vector<light> lights = {l1, l2};
Eigen::Vector3f amb_light_intensity{10, 10, 10};
Eigen::Vector3f eye_pos{0, 0, 10};
float p = 150;
Eigen::Vector3f color = payload.color;
Eigen::Vector3f point = payload.view_pos;
Eigen::Vector3f normal = payload.normal;
Eigen::Vector3f result_color = {0, 0, 0};
for (auto& light : lights)
{
Eigen::Vector3f ambient_color = ka.cwiseProduct(amb_light_intensity);
double distance = (light.position - point).norm();
Eigen::Vector3f light_dir = (light.position - point).normalized();
Eigen::Vector3f diffuse_color = kd.cwiseProduct(light.intensity) / (distance * distance) * std::max(normal.normalized().dot(light_dir),0.0f);
Eigen::Vector3f half_vector = (light_dir + (eye_pos - point).normalized()).normalized();
Eigen::Vector3f specular_color = ks.cwiseProduct(light.intensity) / (distance * distance) * std::pow(std::max(normal.normalized().dot(half_vector),0.0f), p);
result_color += (ambient_color + diffuse_color + specular_color);
}
return (result_color) * 255.f;
}
//
Eigen::Vector3f displacement_fragment_shader(const fragment_shader_payload& payload)
{
Eigen::Vector3f ka = Eigen::Vector3f(0.005, 0.005, 0.005);
Eigen::Vector3f kd = payload.color;
Eigen::Vector3f ks = Eigen::Vector3f(0.7937, 0.7937, 0.7937);
auto l1 = light{{20, 20, 20}, {500, 500, 500}};
auto l2 = light{{-20, 20, 0}, {500, 500, 500}};
std::vector<light> lights = {l1, l2};
Eigen::Vector3f amb_light_intensity{10, 10, 10};
Eigen::Vector3f eye_pos{0, 0, 10};
float p = 150;
Eigen::Vector3f color = payload.color;
Eigen::Vector3f point = payload.view_pos;
Eigen::Vector3f normal = payload.normal;
float kh = 0.2, kn = 0.1;
Eigen::Vector3f tagent;
tagent << normal.x() * normal.y() / std::sqrt(std::pow(normal.x(), 2) + std::pow(normal.z(), 2)),
std::sqrt(std::pow(normal.x(), 2) + std::pow(normal.z(), 2)),
normal.z()* normal.y() / std::sqrt(std::pow(normal.x(), 2) + std::pow(normal.z(), 2));
Eigen::Vector3f bitangent = normal.cross(tagent);
Eigen::Matrix3f TBN;
TBN.col(0) = tagent.normalized();
TBN.col(1) = bitangent.normalized();
TBN.col(2) = normal.normalized();
float width = 1.0f / payload.texture->width;
float height = 1.0f / payload.texture->height;
float dU = kh * kn * (payload.texture->getColor(payload.tex_coords.x() + width, payload.tex_coords.y()).norm() -
payload.texture->getColor(payload.tex_coords.x(), payload.tex_coords.y()).norm());
float dV = kh * kn * (payload.texture->getColor(payload.tex_coords.x() + width, payload.tex_coords.y() + height).norm() -
payload.texture->getColor(payload.tex_coords.x(), payload.tex_coords.y()).norm());
//计算扰动之后的位置
point += kn * normal * payload.texture->getColor(payload.tex_coords.x(), payload.tex_coords.y()).norm();
Eigen::Vector3f ln;
ln << -dU, -dV, 1;
Eigen::Vector3f shading_normal = (TBN * ln).normalized();
Eigen::Vector3f result_color = {0, 0, 0};
for (auto& light : lights)
{
Eigen::Vector3f ambient_color = ka.cwiseProduct(amb_light_intensity);
double distance = (light.position - point).norm();
Eigen::Vector3f light_dir = (light.position - point).normalized();
Eigen::Vector3f diffuse_color = kd.cwiseProduct(light.intensity) / (distance * distance) * std::max(shading_normal.normalized().dot(light_dir), 0.0f);
Eigen::Vector3f half_vector = (light_dir + (eye_pos - point).normalized()).normalized();
Eigen::Vector3f specular_color = ks.cwiseProduct(light.intensity) / (distance * distance) * std::pow(std::max(shading_normal.normalized().dot(half_vector), 0.0f), p);
result_color += (ambient_color + diffuse_color + specular_color);
}
return result_color * 255.f;
}
Eigen::Vector3f bump_fragment_shader(const fragment_shader_payload& payload)
{
Eigen::Vector3f ka = Eigen::Vector3f(0.005, 0.005, 0.005);
Eigen::Vector3f kd = payload.color;
Eigen::Vector3f ks = Eigen::Vector3f(0.7937, 0.7937, 0.7937);
auto l1 = light{{20, 20, 20}, {500, 500, 500}};
auto l2 = light{{-20, 20, 0}, {500, 500, 500}};
std::vector<light> lights = {l1, l2};
Eigen::Vector3f amb_light_intensity{10, 10, 10};
Eigen::Vector3f eye_pos{0, 0, 10};
float p = 150;
Eigen::Vector3f color = payload.color;
Eigen::Vector3f point = payload.view_pos;
Eigen::Vector3f normal = payload.normal;
float kh = 0.2, kn = 0.1;
Eigen::Vector3f tagent;
tagent << normal.x() * normal.y() / std::sqrt(std::pow(normal.x(), 2) + std::pow(normal.z(), 2)),
std::sqrt(std::pow(normal.x(), 2) + std::pow(normal.z(), 2)),
normal.z()* normal.y() / std::sqrt(std::pow(normal.x(), 2) + std::pow(normal.z(), 2));
Eigen::Vector3f bitangent = normal.cross(tagent);
Eigen::Matrix3f TBN;
TBN.col(0) = tagent.normalized();
TBN.col(1) = bitangent.normalized();
TBN.col(2) = normal.normalized();
float width = 1.0f / payload.texture->width;
float height = 1.0f / payload.texture->height;
float dU = kh * kn * (payload.texture->getColor(payload.tex_coords.x() + width, payload.tex_coords.y()).norm() -
payload.texture->getColor(payload.tex_coords.x(), payload.tex_coords.y()).norm());
float dV = kh * kn * (payload.texture->getColor(payload.tex_coords.x() + width, payload.tex_coords.y() + height).norm() -
payload.texture->getColor(payload.tex_coords.x(), payload.tex_coords.y()).norm());
Eigen::Vector3f ln;
ln << -dU, -dV, 1;
normal = (TBN * ln).normalized();
Eigen::Vector3f result_color = {0, 0, 0};
result_color = normal;
return result_color * 255.f;
}