Datawhale AI夏令营第四期 大模型应用开发 Task3.3 案例:司法大模型

1 项目背景

近年来,随着以裁判文书为代表的司法大数据不断公开,以及自然语言处理技术的不断突破,如何将人工智能技术应用在司法领域,辅助司法工作者提升案件处理的效率和公正性,逐渐成为法律智能研究的热点。

司法大模型是人工智能在司法领域的一个重要应用,旨在通过先进的技术提升法律服务的效率和准确性。例如,山东大学联合浪潮云和中国政法大学共同研发的"夫子明察司法大模型"是基于海量中文无监督司法语料和有监督司法微调数据训练而成的。

2 产品功能

  • 法条检索:能够结合相关法条进行回复生成,确保回复基于与问题相关的法律依据。
  • 案例分析:基于历史相似案例对输入案情进行分析,生成与用户提供的案情相似的案情描述及判决结果。
  • 三段论推理判决:将法律规范作为大前提,案件事实作为小前提,生成逻辑严谨的三段论式判决预测。

3 应用价值

  • 提高法律咨询的精准度:为用户提供全方位、高精准的法律咨询与解答服务。
  • 辅助司法判决:通过分析案情和法律法规,辅助法官或律师做出更合理的判决。
  • 优化法律工作流程:提供全流程智能辅助办案应用,如智能审查、量刑预测、文书生成等。

4 技术方案

  • 数据训练:使用海量中文无监督司法语料(如判决文书、法律法规)和有监督司法微调数据(如法律问答、类案检索)进行训练。
  • 模型优化:针对法律行业的特殊性,对通用大模型进行有监督调优,提升其在法律领域的专业性。

本项目基于源大模型RAG技术来解决用户的问题。

具体来说,项目主要包含一个Streamlit开发的客户端,以及一个部署好的浪潮源大模型的服务端。

客户端接收到用户的提问后,发送到服务端。服务端首先完成问题的解析,然后拼接摘要Prompt并输入源大模型,得到模型输出结果后,返回给客户端并展示给用户。

如果用户接下来进行提问,客户端将用户请求发送到服务端,服务端进行Embedding和Faiss检索,然后将检索到的chunks与用户请求拼接成Prompt并输入到源大模型,得到模型输出结果后,返回给客户端进行结构化,然后展示给用户。

5 核心代码

Task3.1:源大模型RAG实战

Task3.2:案例:AI科研助手

安装依赖

bash 复制代码
pip install tf-keras

6 运行效果

7 迭代计划

|--------|------------------------------------------------------|----------|
| 功能 | 描述 | 完成时间 |
| 产品原型 | 完成产品原型设计和开发。 进行小范围的用户测试,收集反馈。 优化产品功能,修复发现的问题。 | x月x日 |
| 商业模式 | 扩大用户测试范围,进一步验证产品可行性。 根据用户反馈调整产品设计和功能。 开始构建商业模式和营销策略。 | x月x日 |
| 市场推广 | 正式推出产品,进行市场推广。 持续优化产品,根据用户反馈进行迭代。 监控产品性能,确保稳定性和安全性。 | x月x日 |
| 拓展业务 | 分析用户数据,调整商业模式和市场策略。 拓展产品线或服务范围。 建立长期客户关系,提升用户满意度。 | x月x日 |

8 商业模式

  • 目标市场:专注于为企业客户提供专业的法律咨询服务。
  • 收入来源
    • 订阅费:用户按月或年支付订阅费用以使用服务。
    • 交易费:通过平台完成的法律服务收取一定比例的费用。
    • 增值服务:提供高级分析报告、专业培训等增值服务。
  • 成本结构
    • 研发成本:持续优化产品和技术。
    • 运营成本:服务器维护、客户服务等。
    • 市场推广成本:广告、营销活动等。

9 市场推广策略

  • 内容营销:发布高质量的法律专业文章和案例分析,提升品牌权威性。
  • 社交媒体营销:利用社交媒体平台推广产品,与用户互动。
  • 合作伙伴关系:与律师事务所、法律培训机构等建立合作关系。
  • 线上/线下活动:举办研讨会、工作坊等,吸引目标客户。
  • 搜索引擎优化(SEO):优化网站内容,提高在搜索引擎中的排名

10 团队介绍

|--------|--------|---------|-----------|--------|---------|----------------|
| 姓名 | 性别 | 手机号 | 学校 | 学历 | 专业 | 项目职责 |
| 吴彦祖 | 男 | xxx | DataWhale | 研究生 | 计算机应用技术 | 项目策划、代码编写、文档撰写 |
| 刘德华 | 男 | xxx | DataWhale | 本科生 | 计算机科学技术 | 项目参与、代码编写、文档撰写 |

相关推荐
工藤学编程28 分钟前
零基础学AI大模型之Milvus索引实战
人工智能·milvus
海边夕阳20067 小时前
【每天一个AI小知识】:什么是生成对抗网络?
人工智能·经验分享·深度学习·神经网络·机器学习·生成对抗网络
Wise玩转AI8 小时前
Day 27|智能体的 UI 与用户交互层
人工智能·python·ui·ai·chatgpt·ai智能体
youcans_8 小时前
【youcans论文精读】VM-UNet:面向医学图像分割的视觉 Mamba UNet 架构
论文阅读·人工智能·计算机视觉·图像分割·状态空间模型
铮铭8 小时前
扩散模型简介:The Annotated Diffusion Model
人工智能·机器人·强化学习·世界模型
轻竹办公PPT8 小时前
轻竹论文:毕业论文AI写作教程
人工智能·ai·ai写作
呵呵哒( ̄▽ ̄)"8 小时前
专项智能练习(课程类型)
人工智能
2501_918126919 小时前
如何用ai把特定领域的生活成本归零
人工智能·生活·个人开发
Brianna Home9 小时前
[鸿蒙2025领航者闯关] 鸿蒙 6.0 星盾安全架构 + AI 防窥:金融级支付安全实战与深度踩坑实录
人工智能·安全·harmonyos·安全架构