分布式基础理论——CAP理论和BASE理论

文章目录

      • [CAP 理论](#CAP 理论)
      • [BASE 理论](#BASE 理论)
      • 参考资料

CAP 理论

CAP定理(CAP theorem)指出,在分布式系统中,设计读写操作时只能同时满足以下三个特性中的两个:

  • 一致性(Consistency) : 所有节点访问同一份最新的数据副本。需要强调的是,这里的一致性指的是线性一致性。
  • 可用性(Availability): 非故障的节点在合理的时间内返回合理的响应(不是错误或者超时的响应)。
  • 分区容错性(Partition Tolerance) : 在出现网络分区的时候,节点之间的通信出现失败的情况,分布式系统仍然能够对外提供服务。

注意,这里的"三选二" 理解如下:

  • 在CAP理论中,分区容错性(P)是必须满足的。因为在大规模分布式系统中,网络分区是不可避免的。

  • 在满足分区容错性的前提下,分布式系统只能在一致性(C)和可用性(A)之间进行权衡。

  • 当网络分区正常(即系统在大多数时间内处于稳定的网络状态)时,C 和 A 是可以同时满足的,因为此时无需考虑分区容错性(P)的影响。

因此,分布式系统理论上不可能选择 CA 架构,只能选择 CP 或者 AP 架构。因为 CA 架构的系统不再是标准的分布式系统,主数据库和从数据库不在进行同步。

  • CP 架构案例:ZooKeeper、HBase、Nacos
  • AP 架构案例:Cassandra、Eureka、Nacos

BASE 理论

BASE(Basically Available, Soft State, Eventually Consistent) 是 CAP 理论中 AP 方案的延伸,通过牺牲强一致性来获取可用性,但会保证最终一致性。由于分布式系统在CAP理论中最多只能同时满足两个特性,在实际场景中,大多数分布式系统会选择AP方案,即牺牲强一致性以确保系统的可用性和分区容错性。然而,在这种架构设计中,系统通常会采用最终一致性策略。最终一致性允许多个节点的数据在短时间内存在差异,但经过一段时间后,这些数据会自动同步,最终达到一致的状态。

BASE(BasicallyAvailable, Soft State, Eventually Consistent) 的具体特点如下:

  • Basically Available(基本可用):系统保证在大多数情况下可用,即便在某些异常情况下,部分功能可能无法正常工作,但不会导致整个系统不可用。例如,在线购物平台在高峰期可能会延迟订单处理,但用户仍然能够浏览商品和提交订单。
  • Soft State(软状态):系统中的数据状态可以在某个时间点不同步,允许不同节点之间的数据存在短暂的不一致性。这种不一致性是暂时的,最终会被解决。
  • Eventually Consistent(最终一致性):虽然系统可能在一段时间内处于不一致的状态,但经过一段时间后,所有数据节点最终会达到一致的状态。这意味着系统不会始终保持一致性,但在没有进一步的输入时,最终会达到一致性。

参考资料

《深入理解分布式系统 唐伟志》

《深入理解分布式事务:原理与实战 肖宇》

CAP & BASE理论详解 | JavaGuide

相关推荐
程序猿阿伟1 小时前
《分布式追踪Span-业务标识融合:端到端业务可观测手册》
分布式
消失的旧时光-19433 小时前
第十六课实战:分布式锁与限流设计 —— 从原理到可跑 Demo
redis·分布式·缓存
若水不如远方3 小时前
分布式一致性(三):共识的黎明——Quorum 机制与 Basic Paxos
分布式·后端·算法
会算数的⑨4 小时前
Kafka知识点问题驱动式的回顾与复习——(一)
分布式·后端·中间件·kafka
张小凡vip5 小时前
Kafka--使用 Kafka Connect 导入/导出数据
分布式·kafka
回忆是昨天里的海5 小时前
kafka概述
分布式·kafka
知识即是力量ol5 小时前
初识 Kafka(一):分布式流平台的定义、核心优势与架构全景
java·分布式·kafka·消息队列
nbsaas-boot5 小时前
Pipeline + Saga 分布式扩展规范
分布式
creator_Li5 小时前
分布式IM聊天系统的消息可靠性
分布式·im
一条闲鱼_mytube5 小时前
《分布式事务实战完全指南》:从理论到实践
分布式